Solving Differential Equations Using Separation of Variables
The idea: A differential Equation can be solved easily if it has one variable (x) by taking the anti-derivative:
Example 1:
Find the general solution to the differential equation:

$$
\frac{d y}{d x}=\sin (x)+x^{2}
$$

To see the "separation" happen, multiply each side by $d x$:

$$
d y=\sin (x)+x^{2} d x
$$

Now, take the anti derivative of each side:

$$
\begin{aligned}
& \int d y=\int \sin (x)+x^{2} d x \\
& y=-\cos x+\frac{x^{3}}{3}+C \begin{array}{c}
\text { tach } \\
\text { onto } \\
\text { one side }
\end{array}
\end{aligned}
$$

Now, suppose the derivative is a function of both x and y. By separating the variables on both sides of the equation and integrating with respect to each, we can solve for the variable:

Example 2:
Find the general solution to the equation:

$$
\left.(d x) \frac{d y}{d x}=x^{2} y d x\right)
$$

Start by multiplying each side by $d x$:

$$
d y=x^{2} y d x
$$

Now, go one step further and divide each side by y :

$$
\frac{1(d y)}{y}=\frac{x^{2} y(d x)}{y} \quad \frac{1}{y} d y=x^{2} d x
$$

Notice, we have y 's on the left and x 's on the right.
This lets us integrate both sides with respect to $d y$ and $d x$:

$$
\begin{gathered}
\int \frac{1}{y} d y=\int x^{2} d x \\
\ln y=\frac{x^{3}}{3}+c \\
e^{\left(\frac{x^{3}}{3}+c\right)}=x
\end{gathered}
$$

The last step is to solve for y. In this case, we need to use properties of logarithms to solve:

It is important to realize that not all differential equations can be solved in this way. Only derivatives that can be separated fully before integrating can be solved in this way:

A separable differential equation is in the form:

$$
G(y) d y=F(x) d x
$$

Example 3:
Find the specific solution to differential equation given the initial condition.

$$
\begin{aligned}
& (d x) \frac{d y}{d x}=\frac{x^{2}}{y}(d x)(y=4 \text { when } x=0 \\
& (y) d y=\frac{x^{2}}{x} d x \quad(y) \\
& y d y=x^{2} d x \\
& \int y^{\prime} d y=\int x^{2} d x \quad \text { Plug in to solve } \\
& \begin{array}{l}
\frac{y^{2}}{2}=\frac{x^{3}}{3}+C \quad \text { for } C \\
\frac{y^{2}}{2}=\frac{0^{3}}{3}+C \quad(2) \frac{y^{2}}{2}=\left(\frac{x^{3}}{3}+8\right)(2) \\
8=C
\end{array} \quad y^{2}=\frac{2 x^{3}}{3}+16 \\
& y=\sqrt{\frac{2 x^{3}}{3}+16}
\end{aligned}
$$

