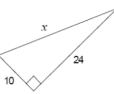
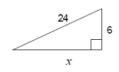
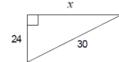
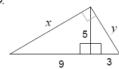

Bronze: Use the Pythagorean Theorem to determine the missing side.


1.

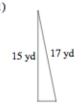

4.

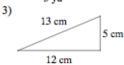


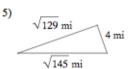
5.



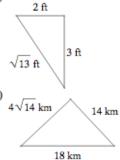
3.


6.




Silver: Use the Pythagorean Theorem to determine if the following triangles are right, acute, or isosceles.

1)



3 yd

State if the three side lengths form an acute, obtuse, or right triangle.

7) 8 m, 14 m, 17 m

8) 12 m, 12 m, 15 m

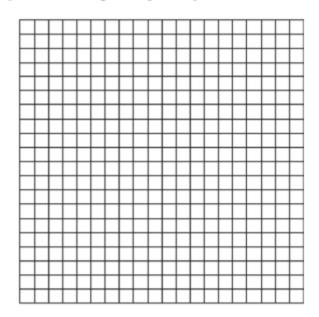
9) 3.9 mi, 5.2 mi, 6.5 mi

10) 7.2 mi, 32 mi, 32.8 mi

11) 5 ft, 16 ft, $4\sqrt{17}$ ft

12) $\sqrt{82}$ in, 11 in, $\sqrt{203}$ in

13) 5 m, 9 m, $\sqrt{108}$ m

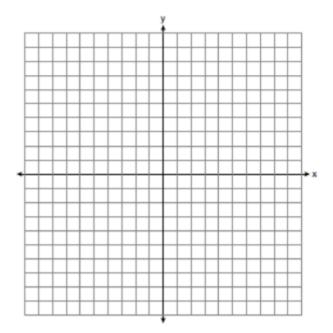

14) $3\sqrt{3}$ km, 11 km, 14 km

Gold: Prove the following triangle types using the Pythagorean Thm. (DON'T FORGET THE CLOSING STATEMENT!!)

Given: J(-4,1), E(-2,-3), N(2,-1)

Prove: $\triangle JEN$ is an isosceles right triangle.

[The use of the grid is optional.]



Given: Triangle RST has coordinates R(-1,7),

S(3,-1), and T(9,2)

Prove: $\triangle RST$ is a right triangle

[The use of the set of axes below is optional.]

