Master Problem Set R2

1. Solve the following systems algebraically

目 $\stackrel{1}{1}$ a)
$y=5 x^{2}-5 x+3$
$y=2 x+9$

$y=-x^{2}-3 x+41$ $y=-3 x-8$

$$
\begin{aligned}
& -3 x-8=-x^{2}-3 x+41 \\
& +3 x \quad+3 x
\end{aligned}
$$

$$
\begin{array}{ll}
-8= & -x^{2}+41 \\
-41 & -41 \\
\frac{-49}{-1}= & \begin{array}{l}
-x^{2} \\
-1
\end{array} \\
(-7,13) \\
(7,-29)
\end{array}
$$

c)

$$
49=x^{2}
$$

$x= \pm 7$
$(x+2)^{2}+y^{2}=40$
Solve $+y+y$
for $x \quad x=y+2$

$$
\begin{aligned}
& (x+2)^{2}+y^{2}=40 \\
& (y+2+2)^{2}+y^{2}=40 \\
& (y+4)^{2}+y^{2}=40 \\
& y^{2}+8 y+16+y^{2}=40 \\
& \frac{2 y^{2}}{2}+\frac{8 y}{2}-\frac{24}{2}=0
\end{aligned}
$$

$$
y^{2}+4 y-12=0 \quad 64-2
$$

$$
x=y+2
$$

$$
\begin{aligned}
& \text { d) } \\
& x^{2}+(y-1)^{2}=97 \\
& -x+y=6 \\
& +x \quad+y \\
& \quad y=x+6
\end{aligned}
$$

$$
\begin{array}{ll}
x^{2}+(y-1)^{2}=97 & x^{2}+5 x-36=0 \\
x^{2}+(x+6-1)^{2}=97 & (x+9)(x-4)=0 \\
x^{2}+(x+5)^{2}=97 & x=-9 x=4 \\
x^{2}+x^{2}+10 x+25=97 &
\end{array}
$$

$$
\frac{2 x^{2}}{2}+\frac{10 x}{2}-\frac{72}{2}=0
$$

$$
\begin{aligned}
& (x+5)^{2}+y^{2}=13 \\
& x-3 y=-2 \\
& x=3 y-2
\end{aligned}
$$

$$
\begin{array}{ll}
(3 y-2+5)^{2}+y^{2}=13 \\
(3 y+3)^{2}+y^{2}=13 \\
9 y^{2}+18 y+9+y^{2}=13 \\
\frac{10 y^{2}}{2}+\frac{18 y}{2}-4=0 \\
5 y^{2}+9 y-2=0 & \left(-\frac{7}{5}, \frac{1}{5}\right) \\
\left(5 y^{2}+10 y\right)(-1 y-2)=0
\end{array}
$$

$$
\begin{aligned}
& (-4,-6) \\
& (4,2)
\end{aligned}
$$

2. Solve the following systems graphically (round all decimals to nearest tenth): a)

$$
\begin{aligned}
& y=3 x^{2}+6 x-6 \\
& y=2 x+1
\end{aligned}
$$

目
$y=x^{2}-7 x-36$

$$
\begin{gathered}
3 x+y=9 \\
-3 x
\end{gathered}
$$

$$
y=-3 x+9
$$

Graphically: Always solve for y

$$
\begin{aligned}
& \text { c) } \\
& y=x^{3}-5 x^{2}+6 x-1 \\
& y=2 x-4
\end{aligned}
$$

Solutions: $(1,3)$

$$
\text { and }(-2.333,-3.667)
$$

Solutions: $(-5,24)$

$$
\text { and }(9,-18)
$$

Answers:

$$
\begin{aligned}
& (3.7,3.4) \\
& (1.8,-0.5) \\
& (-0.5,-4.9)
\end{aligned}
$$

d)

$$
\begin{aligned}
& y=|x|+2^{x} \\
& y=\sqrt{x+6}+3
\end{aligned}
$$

Solutions:
($2.0,5.8$) and ($-4.3,4.3$)
e)

$$
\begin{aligned}
& y=x^{4}-\frac{13}{2} x^{3}-\frac{9}{4} x \\
& y=2 x+5
\end{aligned}
$$

Solutions: ($6.6,18.2$) and $(-.7,3.7)$

3. Solve the following system algebraically:

賋道 a$)$

$(-4,6,1)$
$(7,-3,3)$
c)
$8 x+2 y+9 z=-6$
$4 x+3 y+2 z=-4$
$-4 x+3 y-8 z=-8$

$$
\begin{aligned}
& 9 x+9 y-8 z=10 \\
& 3 x+4 y-3 z=9 \\
& 9 x+6 y+2 z=2
\end{aligned}
$$

b)
$-2 x-5 y+3 z=10$ $x+9 y+5 z=-5$ $4 x-y-8 z=7$

$$
(8,-8,-6)
$$

d)
$7 x+4 y+9 z=-5$
$4 x+5 y-9 z=-4$
$4 x+6 y-9 z=6$
$(-9,10,2)$
e)

A candy store sells three different packages of candy: Packages of lollipops, gum, and chocolate. Sarai comes in and purchases 9 packages of lollipops, 3 packages of gum, and 4 packages of chocolate and her total is $\$ 53$. Benji purchases 9 packages of lollipops, 6 packages of gum, and 5 packages of chocolate and spends $\$ 64$. Giselle buys three packages of lollipops, 5 packages of gum, and 2 packages of chocolate and her total is $\$ 31$. Find the total cost of each package of candy.

Lollipops: \$4 per package
 Gum: $\$ 3$ per package
 Chocolate: \& 2 per package

f) Yes, they will meet after 4 seconds at a spot 15 feet above the ground

g) System: $v=$ \# of volley balls sold $b=$ \# of basketballs sold $f=\#$ of footballs sold

$$
\begin{aligned}
& 5 v=f \\
& 35 f+25 b+15 v=3750 \\
& 4(15 v)=25 b \\
& (0)=75 b
\end{aligned}
$$

(1) Substitute $5 v$ in for f in second equation

$$
\begin{aligned}
35(5 v)+25 b+15 v & =3750 \\
175 v+25 b+15 v & =3750
\end{aligned}
$$

(2) substitute 60 v in for 256

$$
\begin{gathered}
175 v+(60 v)+15 v=3750 \\
\frac{250 v}{250}=\frac{3750}{250} \\
v=15
\end{gathered}
$$

$$
\begin{gathered}
5(15)=f \\
75=f \\
60(15)=25 b \\
900=\frac{25 b}{25} \\
36=b
\end{gathered}
$$

