Name:
1:
Suppose that the number of scores on a test are normally distributed and, approximately 68% of the scores fall between 55 and 67 and them ean is 61. What is the standard deviation?
Draw the normal distribution!

$$
\text { Std. deva }=6
$$

2:
within one standard deviation

The national mean for verbal scores on an exam was 500 and the standard deviation was 30.
Approximately what percent of these taking the test had verbal scores between 480 and 490 ?
Round your answer to the nearest tenth and show any calculations you might have done.
normalcdf $(480,490,500,30)=.117$

$$
\text { min max mean }\left[\begin{array}{l}
\frac{1}{d} \\
=11.7 \%
\end{array}\right.
$$

3:

A person's blood pressure is roughly 120 and normally distributed with a standard deviation of 6 .
a) State an interval (lowest to highest)ranaf values for which 95% of people's blood pressure lies.

L within 2 standard deviations of the mean.
b) What is the probability that someone's blood pressure is greater than 1402
normalcdf $(140,1000,120,6)=4.29 E^{-4}=.000429$

$$
=.0429 \%
$$

min max mean CAto. dev.
(choose a large number!)
c) Which is greater, the probability that someone has a blood pressure less than 90 or greater than 130? Show your calculations. Why does this make sense?

Less than 90
normaledf($(-1000,90,120,6)$
$=2.87 E^{-7}$
$=.006600287$

Greater than 130 normaledf $(130,1000,120,6)$
$=.0477$
7 This probability 16 larger, so it is more likely to have a blood pressure more than 130.

