Preparation for Tomorrow's Quiz
Answer the following based on the graph below:

a) State the intervals where the function is increasing and decreasing.
Increasing: $x<-3.5 \quad-1<x<1 \quad x>2.5$
Decreasing: $-35<x<-1 \quad 1<x<2,5$
b) State the x values where the function has a relative minimum or relative maximum
$\min x=-1 \quad x=2.5$ max: $x=-3.5$
c) Estimate any points of inflection

$$
x=1
$$

$$
x=-2 \quad x=0 \quad x=2
$$

d) State the intervals where the function is concave up and concave down.
Concave Down: $-\infty<x<-2$ Concave up:
Determine whether the statements are true o
a) The first derivative is zero when $x=-3.5$
True: The tangent line is horizontal (zero slope)
b) The second derivative is zero when $x=-3,5$

False: The graph is concave down so $f^{\prime \prime}(x)$ is negative at $x=3.5$
c) There are three points of inflection on the interval $-5<x<3$

$$
\begin{aligned}
& \text { three points of inflection on the interval-55x<3} \\
& \text { True, the graph changes inflection } 3 \text { times }
\end{aligned}
$$

d) The first derivative is positive when $x=2$

$$
\begin{aligned}
& \text { Privative is positive when } x=2 \\
& \text { False, the Slope is negative } \\
& \text { dd derivative is negative when } x=-1
\end{aligned}
$$

e) The second derivative is negative when $x=-1$

$$
\begin{aligned}
& \text { False, the graph is concave up at } x=-1 \text { so } \\
& f^{\prime \prime}(x) \text { is }
\end{aligned}
$$

f) There are two relative minimums from $-5<x<3$ $f^{\prime \prime}(x)$ is positive
True, there are two points where the graph goes from
g) A graph of the first derivative will have $4 x$-intercepts. decreasing to increasing
True, there are four points where the graph of $f(x)$ has
h) the slope of the tangent line is increasing at $x=-3$ a horitontal tangent line False, the graph is concave down so the slope is
i) This function has an absolute maximum decreasing. False, as $x \rightarrow \infty, f(x) \rightarrow \infty$

For the functions $f(x)$ shown below:
a) State any relative extrema (min or max)
b) State the intervals where the function is increasing and decreasing.
c) State any points of inflection.
d) Determine the intervals where the function is concave up and concave down.
e) Use the information from parts a) - d) to create an accurate sketch of the function:

Level 2: (Try this one if you wan to build up to a level 3): $f(x)=x^{2}-12 x+27$

$$
\begin{aligned}
& f(x)=x^{2}-12 x+27 f^{\prime}(x)=2 x-12 \\
& 2 x-12=0
\end{aligned}
$$

$$
f^{\prime \prime}(x)=2
$$

Always positive so always concave up

Level 3: $g(x)=-5 x^{4}-7 x^{3}+6 x^{2}$

Level 3: $h(x)=\frac{1}{3} x^{3}+x^{2}+3 x$

Level 4: $p(x)=\frac{1}{3 x-1}$

Level 4: $m(x)=x-4 \sqrt{x}$

Level 2:

Level 3:

$$
\begin{array}{l|l}
g(x)=-x^{4}-8 x^{3}-16 x^{2} \\
x & g(x) \\
\hline-4 & 0 \\
-3.15 & -7.17 \\
-2 & -16 \\
-.85 & -7.17 \\
0 & 0
\end{array}
$$

$$
\begin{aligned}
& g^{\prime}(x)=-4 x^{3}-24 x^{2}-32 x \\
& -4 x\left(x^{2}+6 x+8\right) \\
& 0=-4 x(x+4)(x+2) \\
& x=0 \quad x=-4 \quad x=-2 \\
& \frac{x-4-20}{g^{\prime}(x+0-0+0-}
\end{aligned}
$$

Increasing:

$$
\begin{gathered}
x<-4 \\
-2<x<0 \\
\text { Decreasing } \\
-4<x<-2 \\
x>0
\end{gathered}
$$

$$
-4\left(3 x^{2}+12 x+8\right)
$$ graph to find zeroes

$$
x=-3.15
$$

$$
x=-85
$$

x	$-3.15-85$
$g^{\prime \prime}(x)$	$-0+0$
	$\cap \bigcup$

$$
x<-3.15
$$

$$
x>-.85
$$ Concave Up: $-3.15<x<-.85$

$$
\begin{aligned}
& f(x)=x^{2}-12 x+27 \quad f^{\prime}(x)=2 x-12 \quad f^{\prime \prime}(x)=2 \\
& \begin{array}{c|cc}
x & y & 2 x-12=0 \\
\hline 6 & -9 & \frac{x}{x}=6 \\
& f^{\prime}(x) \mid-0+ \\
& & \underbrace{x}_{0} \\
& & \text { Relative min }
\end{array} \\
& \text { at } x=6 \\
& \begin{array}{l}
\downarrow \\
\text { Always }
\end{array} \\
& \begin{array}{l}
\text { Always } \\
\text { positive, so }
\end{array} \\
& \text { always } \\
& \text { concave up. }
\end{aligned}
$$

Level 3:

$$
\begin{array}{c|ccc|}
h(x)=\frac{1}{3} x^{3}+x^{2}-3 x & h^{\prime}(x)=x^{2}+2 x-3 & h^{\prime \prime}(x)=2 x+2 \\
x & 0=(x+3)(x-1) & 0=2 x+2 \\
\hline-3 & 9 & x=-3 x=1 & x=-1 \\
-1 & 366 & \left.\frac{x}{x} \right\rvert\,-3 \quad 1 & x \\
1 & -1.66 & h^{\prime}(x) \mid+0-0+ & -1 \\
\hline 11(x) & 0+
\end{array}
$$

Increasing: $x<-3 \quad x>1$
Decreasing: $-3<x<1$
Concave UP: $x>1$
Concave Docon: $x<-1$

