CHAPTER 6

Polygons,
 Quadrilaterals, and Special Parallelograms

Name:

Teacher: \qquad

Pd: \qquad

Table of Contents

DAY 1: (Ch. 6-1) SWBAT: Find measures of interior and exterior angles of polygons Pgs: 1-7
HW: Pgs: 8-10

DAY 2: (6-2) SWBAT: Solve Problems involving Parallelograms
Pgs: 11-16
HW: Pgs: 17-18

DAY 3: (6-4) SWBAT: Solve Problems involving Rectangles
Pgs: 19-22
HW: Pg: 23

DAY 4: (6-4) SWBAT: Solve Problems involving Rhombi and Squares
Pgs: 24-28
HW: Pgs: 29-30

DAY 5: (6-6) SWBAT: Solve Problems involving Trapezoids
Pgs: 31-36
HW: Pgs: 37-39

DAY 6-7: (Review) SWBAT: Review of Quadrilaterals
Pgs: 40-52
HW: Finish this section for homework

Ch2pter 6 (eection 1) - Day 1
 Absles in polygons

A polygon is a closed plane figure formed by three or more segments that intersect only at their endpoints.
Each segment that forms a polygon is a side of the polygon. The common endpoint of two sides is a vertex of the polygon. A segment that connects any two nonconsecutive vertices is a diagonal.

You can name a polygon by the number of its sides. The table shows the names of some common polygons.

Number of Sides	Name of Polygon
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon
12	Dodecagon
n	$n-g o n$

All the sides are congruent in an equilateral polygon. All the angles are congruent in an equiangular polygon. A regular polygon is one that is both equilateral and equiangular. If a polygon is not regular, it is called irregular.

A polygon is concave if any part of a diagonal contains points in the exterior of the polygon. If no diagonal contains points in the exterior, then the polygon is convex. A regular polygon is always convex.

Convex quadrilateral

Concave quadrilateral

Warm - Up

Tell whether the following polygons are concave or convex and regular or irregular.
1.

\qquad
2.

3.

\qquad
4.

\qquad
\qquad

Sum of Interior Angles in Polygons

To find the sum of the interior angle measures of a convex polygon, draw all possible diagonals from one vertex of the polygon. This creates a set of triangles. The sum of the angle measures of all the triangles equals the sum of the angle measures of the polygon.

Polygon	Number of Sides	Number of Triangles	Sum of Interior Angle Measures
Triangle	3	1	$(1) 180^{\circ}=180^{\circ}$
Quadrilateral	4	2	$(2) 180^{\circ}=360^{\circ}$
Pentagon	5	3	$(3) 180^{\circ}=540^{\circ}$
Hexagon	6	4	$(4) 180^{\circ}=720^{\circ}$
n-gon	n	$n-2$	$(n-2) 180^{\circ}$

In each convex polygon, the number of triangles formed is two less than the number of sides n. So the sum of the angle measures of all these triangles is $(n-2) 180^{\circ}$.

Example 1: Calculating the Sum of Interior Angles

Find the sum of the interior angles of a decagon.

You Try It!

Find the sum of the interior angles of a 14-gon.

Example 2: Calculating the number of sides of a polygon given the sum of the interior angles

The sum of the interior angles of a convex regular polygon measure 1980°, how many sides does the polygon have?

[^0]
Example 3: Calculating the measure of each of interior Angle of any regular polygon

What is the measure of each interior angle of a regular octagon?

You Try It!

What is the measure of each interior angle of a regular 12-gon?

[^1]
Exterior Angles

Refer to the two polygons below. What do you notice about the exterior angles of any polygon?

Theorem 6.2

Polygon Exterior Angles Sum
For Your
FOLDABLE
The sum of the exterior angle measures of a convex polygon, one angle at each vertex, is 360 .

Example
$m \angle 1+m \angle 2+m \angle 3+m \angle 4+m \angle 5+m \angle 6=360$

Example 4: Calculating the measure of an exterior angle given the number of sides or Vice Versa

Find the measure of each exterior angle of a polygon with 18 sides.

You Try It!

Find the measure of each exterior angle of a polygon with 36 sides.

You Try It!

The measure of an exterior angle of a convex regular polygon is 45°. Find the number of sides of the polygon.

Example 5: Solving Algebraic Problems

Find the value of x .

Find x :

Challenge

In Exercises 1, find each lettered angle measure.

$$
a=
$$

\qquad , $b=$ \qquad , $c=$ \qquad ,

$d=$ \qquad , $e=$ \qquad

Summary

Properties and Attributes of Polygons

Lesson 6-1

Understanding properties of polygons and their angle sums is fundamental to successful work with quadrilaterals.

Theorem

The sum of the interior angle measures of a convex polygon with n sides
$S_{i}=(n-2) 180$

Theorem

The sum of the exterior angle measures, one angle at each vertex, of a convex polygon is 360°.
$S_{e}=360$ (always - no matter what the polygon)

$$
\begin{gathered}
\text { Theorem } \\
e=\frac{360}{n} \\
\text { Theorem } \\
\mathbf{i} \frac{180(n-2)}{n}
\end{gathered}
$$

Exit Ticket

A stop sign in the shape of a regular octagon is resting on a brick wall, as shown in the accompanying diagram.

What is the measure of angle x ?

1) 45°
2) 60°
3) 120°
4) 135°

Day 1: Homework

The number of sides of a convex polygon is given. Find the sum of the measures of the interior angles of each polygon.

1) 8
2) 12

The sum of the measures of the interior angles of a convex polygon is given. Find the number of sides of each polygon.
6) 7020°
7) 1980°

The number of sides of a regular polygon is given. Find the measure of each interior angle of each polygon.
11) 7
12) 9

Find the exact measure of each exterior angle of the regular polygon. 19) 18-gon 20) 20 -gon

27) In quadrilateral ABCD the measures of, $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}$, and $\angle \mathrm{D}$ are the ratio of 1:2:3:4, respectively. Find the measures of the four angles.

Find the value of x .
28)

30)

32)

33)

34) Light Fixture The side view of a light fixture is shown below. Find the value of x. Then determine the measure of each angle.

35) Tent The front view of a camping tent is shown below. Find the value of x. Then determine the measure of each angle.

Chapter 6 (section 2) - Day 2 Parallelograms

Warm - Up
The measures of five of the interior angles of a hexagon are $150^{\circ}, 100^{\circ}, 80^{\circ}, 165^{\circ}$, and 150°. What is the measure of the sixth interior angle?

1) 75°
2) 80°
3) 105°
4) 180°

Any polygon with four sides is a called a Quadrilateral. However, some quadrilaterals have special properties. These special quadrilaterals are given their own names.

A quadrilateral with two pairs of parallel sides is a parallelogram. To write the name of a parallelogram, you use the symbol \square.

Parallelogram $A B C D$ $\square A B C D$

Given: $\square A B C D$

Given: $\square A B C D$
Identify all angles that are congruent.

\qquad
-
\cong \qquad

- \qquad
\ldots

Properties of Parallelograms

- If a quadrilateral is a parallelogram, then its opposite angles are congruent.

\qquad \cong \qquad
\qquad \cong \qquad
- If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

$$
\begin{aligned}
+\ldots & =180^{\circ} \\
+\ldots & =180^{\circ} \\
+\ldots & =180^{\circ} \\
+\ldots & =180^{\circ}
\end{aligned}
$$

Example 1:

If $m \measuredangle A=5 x$ and $m \measuredangle B=25 x$ solve for x and the following angle measures.

\qquad
$x=$
$m \measuredangle A=$
$m \measuredangle B=$ \qquad $m \measuredangle C=$ \qquad $m \measuredangle D=$ \qquad

Example 2:

Given: $\square A B C D, m \npreceq B A C=25^{\circ}$ and $m \Varangle D=135^{\circ}$. Find the measure of all the other angles.

- If a quadrilateral is a parallelogram, then its opposite sides are congruent.

\qquad
$[\ldots$

Example 3: Solve for x and y.

$$
\begin{aligned}
& A B=4(x+3) ; \quad B C=6-(2+y) \\
& D C=12(x-5) ; \quad A D=3 y
\end{aligned}
$$

$$
x=
$$

\qquad

$$
y=
$$

\qquad

- If a quadrilateral is a parallelogram, then its diagonals bisect each other.

\qquad
\qquad \cong \qquad

Example 4: Solve for x and y.
$B E=6 y-22, D E=4 y-4, A E=3 x-2$, and $A C=8 x-20$

$\mathrm{x}=$ \qquad
$y=$ \qquad

You Try It!
$\mathrm{TX}=4 \mathrm{y}, \quad \mathrm{YX}=30$
$X W=y+3, \quad X Z=3 y+12$
Solve for x and y.

$$
x=
$$

\qquad
$\mathrm{y}=$ \qquad

$$
4(2 y+7)
$$

$$
x=
$$

\qquad

$$
\mathrm{y}=
$$

\qquad
$\overline{N M} \| \overline{L L}$, find $x, m \angle N$, and $m \angle K$.

Challenge

In the accompanying diagram of parallelogram $A B C D$, side $\overline{A D}$ is extended through D to E and $\overline{D B}$ is a diagonal. If $\mathrm{m} \angle E D C=65$ and $\mathrm{m} \angle C B D=85$, find $\mathrm{m} \angle C D B$.

Summary

Properties of Parallelograms

Lesson 6-2

The properties of parallelograms make these figures useful in mechanics and construction.

Exit Ticket

Which statement is not always true about a
parallelogram?

1) The diagonals are congruent.
2) The opposite sides are congruent.
3) The opposite angles are congruent.
4) The opposite sides are parallel.

Find the value of x in parallelograms $A B C D$.
A. 70
B. 75
C. 105
D. 110

Homework

Find the measurement indicated in each parallelogram.
1)

2)

3)

4)

5)

6)

7) $R T=19.8$

Find $R P$

8)

9)

10)

Solve for x. Each figure is a parallelogram.
11)

13)

15)

17) $U H=19$

$$
F H=5 x-7
$$

12)

14)

16)

18) $K U=3 x+3$ $U M=4 x-4$

Find the measurement indicated in each parallelogram.
19) Find $R Q$

21) $T E=4+2 x$
$E V=4 x-4$
Find $T E$

20) Find $m \angle G$

22) $D B=5 x-1$
$B F=5+3 x$
Find $D B$

Chapter 6 (section 4) - Day 3

Rectabsles

Warm - Up

The measures of two consecutive angles of a parallelogram are in the ratio $5: 4$. What is the measure of an obtuse angle of the parallelogram?

1) 20°
2) 80°
3) 100°
4) 160°

Definition: A rectangle is a parallelogram with one right angle.

Properties of a Rectangle

1. A rectangle has all the properties of a parallelogram.
2. A rectangle contains four right angles and is therefore equiangular.
3. The diagonals of a rectangle are congruent.

Properties of Rectangles	
GHJK is a parallelogram. If a quadrilateral is a rectangle, then it is a parallelogram.	If a parallelogram is a rectangle, then its diagonals are congruent.

Since a rectangle is a parallelogram, a rectangle also has all the properties of parallelograms.

Let's explore the Properties of the rectangle!

- The diagonals of a rectangle are congruent.

If $\mathrm{WY}=19$, then $\mathrm{ZX}=?$
If $\mathrm{WY}=19$, then $\mathrm{WT}=?$
If $\mathrm{TX}=4.5$, then $\mathrm{WY}=?$

Rectangle GALS has diagonals GL and AS. If $\mathrm{GL}=3 \mathrm{a}+6$ and $A S=5 a-18$, then $a=$?

- The angles of a rectangle are all right angles.
$>$ If $\mathrm{m} \Varangle 1=55^{\circ}$, find all the missing angle measures.

$>$ Quadrilateral $A B C D$ is a rectangle.
If $m \angle B D C=7 x+1$ and $m \angle A D B=9 x-7$, find $m \angle B D C$.

Practice Problems

a. If $A E=5$, and $D C=8$, find $A C, B D, A D$, and $A B$.

b. If $B D=3 x-7$ and $C A=x+5$, find $B D, E D, C A$, and $A E$.

C. Find the measures of the numbered angles in each rectangle.

d.

If $m \angle D A C=2 x+4$ and $m \angle B A C=3 x+1$, find $m \angle B A C$.

CHALLENGE

In a rectangle, the length is twice the width, and the perimeter is 48 . Find the area of the rectangle.

SUMMARY

Properties of Rectangles A rectangle is a quadrilateral with four right angles. Here are the properties of rectangles.
A rectangle has all the properties of a parallelogram.

- Opposite sides are parallel.
- Opposite angles are congruent.
- Opposite sides are congruent.
- Consecutive angles are supplementary.
- The diagonals bisect each other.

Also:

- All four angles are right angles. $\angle U T S, \angle T S R, \angle S R U$, and $\angle R U T$ are right angles.
- The diagonals are congruent. $\overline{T R} \cong \overline{U S}$

Example 1 Quadrilateral RUTS

above is a rectangle. If $U S=6 x+3$ and $R T=7 x-2$, find x.
The diagonals of a rectangle are congruent, so $U S=R T$.

$$
\begin{aligned}
6 x+3 & =7 x-2 \\
3 & =x-2 \\
5 & =x
\end{aligned}
$$

Example 2 Quadrilateral RUTS

 above is a rectangle. If $m \angle S T R=8 x+3$ and $m \angle U T R=16 x-9$, find $m \angle S T R$.$\angle U T S$ is a right angle, so
$m \angle S T R+m \angle U T R=90$.
$8 x+3+16 x-9=90$
$24 x-6=90$
$24 x=96$
$x=4$
$m \angle S T R=8 x+3=8(4)+3$ or 35

Exit Ticket

In rectangle $A B C D, \overline{A C}$ and $\overline{B D}$ are diagonals. If $\mathrm{m} \angle 1=55$, find $\mathrm{m} \angle A B D$.

1. 20
2. 35
3. 55
4. 65

Homework

Use rectangle $A B C D$ and the given information to solve each problem.

1. If $A C=4 x-60$ and $B D=30-x$, find $B D$.
2. If $A C=4 x-60$ and $A E=x+5$, find $E C$.

3. If $m \angle B A C=4 x+5$ and $m \angle C A D=5 x-14$, find $m \angle C A D$.
4. If $A E=2 x+3$ and $B E=12-x$, find $B D$.
5. If $m \angle B A C=3 x+5$ and $m \angle A C D=40-2 x$.

Find $m \angle A E D$.
6. In the diagram, $A B C D$ is a rectangle, E is a point on $\overline{C D}, \mathrm{~m} \angle D A E=30$, and $\mathrm{m} \angle C B E=20$. What is $\mathrm{m} \angle x$?

1. 25
2. 50
3. 60
4. 70

Quadrilateral $G H J K$ is a rectangle. Find each measure if $m \angle 1=37$.
7. $m \angle 2$
9. $m \angle 4$
11. $m \angle 6$
8. $m \angle 3$
10. $m \angle 5$
12. $m \angle 7$

Chapter 6 (section 4) - Day 4
 Rhombi and Squares

Warm - Up

1. Quadrilateral $D E F G$ is a rectangle.

If $F D=3 x-7$ and $E G=x+5$, find $E G$.

2. Quadrilateral $A B C D$ is a rectangle. Find each measure if $m \angle 2=40$.

Rhombus

Definition: A quadrilateral with 4 congruent sides.

1) Opposite sides are congruent (they equal each other).
2) Opposite angles are congruent (they equal each other).
3) Consecutive angles are supplementary (they add up to 180).
4) Diagonals bisect each other (the parts are equal).
5) Diagonals perpendicular (the form right angles in the middle).
6) Diagonals bisect angles (the angles are equal to each other).
7) All four sides are congruent.
8) The diagonals are NOT congruent.

Square

Definition: A square is a rectangle with 2 congruent consecutive sides.

SQUARES:

1) Opposite sides are congruent (they equal each other).
2) Opposite angles are congruent (they equal each other).
3) Consecutive angles are supplementary (they add up to 180).
4) Diagonals bisect each other (the parts are equal).
5) Diagonals are congruent (they equal each other).
6) All four corner angles are 90°.
7) Diagonals perpendicular (the form right angles in the middle).
8) Diagonals bisect angles (the angles equal to each other). \square
> If $\mathrm{AB}=2 \mathrm{x}+4$ and $\mathrm{CD}=3 \mathrm{x}-5$, Find BC and BD .

> If $m \angle A E B=(3 x)^{\circ}$, find ' x '.
> If $m \angle B A C=(9 x)^{\circ}$, find ' x '.
> The perimeter of the square is 32 cm . Find the length of diagonal DB.

If $\mathrm{DM}=6 \mathrm{y}+4$ and $\mathrm{ML}=5 \mathrm{y}+8$, find the length of KL.

Find each variable in the rhombus.

> Find the measures of the numbered angles in each rhombus.
$m \angle 1=$ \qquad $-$
$\mathrm{m} \angle 2=$ \qquad
$\mathrm{m} \angle 3=$ \qquad $-\quad$
$m \angle 4=$ \qquad

> The diagonals of a Rhombus are 10 , and 24 cm . Find the length of the side of the rhombus.

Challenge

SNOW is a rhombus with $\mathrm{SN}=2 \mathrm{x}^{2}-20, \mathrm{NO}=\mathrm{x}^{2}+9 \mathrm{x}+16$, and $\mathrm{OW}=\mathrm{y}$. Find the value of x and y.

SUMMARY

SQUARES:

1) Opposite sides are congruent (they equal each other).
2) Opposite angles are congruent (they equal each other).
3) Consecutive angles are supplementary (they add up to 180).
4) Diagonals bisect each other (the parts are equal).
5) Diagonals are congruent (they equal each other).
6) All four corner angles are 90°.
7) Diagonals perpendicular (the form right angles in the middle).
8) Diagonals bisect angles (the angles equal to each other).

RHOMBI:

1) Opposite sides are congruent (they equal each other).
2) Opposite angles are congruent (they equal each other).
3) Consecutive angles are supplementary (they add up to 180).
4) Diagonals bisect each other (the parts are equal).
5) Diagonals perpendicular (the form right angles in the middle).
6) Diagonals bisect angles (the angles are equal to each other).
7) All four sides are congruent.
8) The diagonals are NOT congruent.

Exit Ticket

Property	Rectangle	Rhombus	Square
1. All the properties of a parallelogram?			
2. Equiangular (4 right corner angles?)			
3. Equilateral (4 congruent sides?)			
4. Diagonals bisect angles?			
5. Diagonals congruent?			
6. Diagonals perpendicular?			

Homework

Find the value of each variable in each rhombus.
1.

$\mathrm{a}=$ \qquad $b=$ \qquad $\mathrm{c}=$ \qquad $d=$ \qquad
2.

3.

$a=$ \qquad $b=$ \qquad $c=\quad d=$ \qquad
4.

$\mathrm{a}=$ \qquad $b=$ \qquad $c=$ \qquad $d=$ \qquad
5. $K L M N$ is a square $\overline{N M}=14$ $m \angle L M O=$ $m \angle K L M=$
Perimeter $K L M N=$

6. $E F G H$ is a square. If $E F=10$, find the following:

a. $\mathrm{FG}=$ \qquad d. $E I=$ \qquad g. $\angle 1=$ \qquad
b. $\angle \mathrm{EFG}=$ \qquad e. $\mathrm{IF}=$
h. $\angle 3=$ \qquad
c. $\mathrm{EG}=$ f. $\angle E I F=$
i. $\mathrm{HF}=$ \qquad

Find each value in the parallelograms.

$\mathrm{a}=$ \qquad $\mathrm{b}=$ \qquad $\mathrm{x}=$ \qquad $y=$ \qquad
$a=$
\qquad $b=$ \qquad $\mathrm{x}=$ \qquad $y=$ \qquad

Find the value of each variable in the rectangle.
9.

$$
\overline{\mathrm{AM}}=4 \mathrm{x}-1
$$

$$
\overline{\mathrm{DB}}=6 x+16
$$

$$
\angle A B C=8 a+2
$$

$$
a=
$$

\qquad $x=$ \qquad
10.

$a=$ \qquad $x=$ \qquad
11. The diagonals of a rhombus are 12 and 16 cm . Find the length of a side of the rhombus.
12. The shorter diagonal of a rhombus measures 18 cm . The side of the rhombus measures 41 cm . Find the length of the longer diagonal.

Chapter 6 (section 6) - Day 5 Treqpezoids

Warm - Up

1. $A B C D$ is a rhombus. If $P B=12, A B=15$, and $m \angle A B D=24$, find each measure.

(23) $A P$

25. $m \angle B D A$
26. $C P$
27. $m \angle A C B$

28. $X Y$
29. $m \angle W T Z$
30. $m \angle W Y X$

Definition: A trapezoid is a quadrilateral with one pair of parallel sides.

Definition: An Isosceles trapezoid is a trapezoid with non parallel sides congruent.

Properties of Isosceles Trapezoids

- If a quadrilateral is an isosceles trapezoid, then each pair of base angles are congruent.

\qquad
\qquad \cong \qquad
-

$+$ \qquad $=180^{\circ}$
\qquad $+$ \qquad $=180^{\circ}$

- If a quadrilateral is an isosceles trapezoid, then the diagonals are congruent

\qquad
\qquad \cong \qquad
\qquad \cong \qquad

Practice Problems

ALGEBRA Find each measure.

1. $m \angle S$
2. $m \angle M$

3. Trapezoid PQRS. Find the $\mathrm{m} \angle 1$ and $\angle 2$.

$$
\mathrm{m} \angle 1=_\quad \circ
$$

4. Isosceles Trapezoid ABCD.

$m \angle 1=$ \qquad
$\mathrm{m} \angle 2=$ \qquad
$\mathrm{m} \angle 3=$ \qquad
$\mathrm{m} \angle 4=$ \qquad
$\mathrm{m} \angle 2=$ \qquad
5. Find the values of the variables.

6. $A C=7 x-15, B D=4 x+15$

The midsegment of a trapezoid is the segment that connects the midpoints of the legs of the trapezoid. The theorem below relates the midsegment and the bases of a trapezoid.

Median = $1 / 2$ (base + base) $2 \mathrm{~m}=\mathrm{b}_{1}+\mathrm{b}_{2}$

- The midsegment of a trapezoid is parallel to each base. $\overline{A B} \| \overline{M N}$ and $\overline{A B} \| \overline{L P}$
- The length of the midsegment is one-half
the sum of the length of the bases.
$A B=\frac{1}{2}(M N+L P)$

For trapezoid $Q R T U, V$ and S are midpoints of the legs.

11. In the accompanying figure, isosceles trapezoid $A B C D$ has bases of lengths 9 and 15 and an altitude of length 4. Find $A B$.

12. Find the length of base $\overline{A B}$ of trapezoid $A B C D$.

CHALLENGE

Given trapezoid BARK with midsegment $\overline{N O}$.

$$
B A=c^{2}, N O=6 c, K R=c^{2}+18 . \text { Find } c .
$$

SUMMARY

ISOSCELES TRAPEZOIDS:
Median $=1 / 2($ base + base $) \stackrel{2 m=}{ } \mathrm{b}_{1+} \mathrm{b}_{2}$

1) Lower two base angles are congruent (they equal each other).
2) Upper two base angles are congruent (they equal each other).
3) The diagonals are congruent (they equal each other).
4) opposite angles are supplementary (they add up to 180).

Exit Ticket

Isosceles trapezoid $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$. If $A C=5 x+13$ and $B D=11 x-5$, what is the value of x ?

1) 28
2) $10 \frac{3}{4}$
3) 3
4) $\frac{1}{2}$

Homework - Trapezoids

Find each measure.

1.

2. $\quad \begin{array}{r}m \angle Y \\ W\end{array}$

3. Trapezoid PQRS. Find the $\mathrm{m} \angle 1$ and $\angle 2$.

4. ABCD is an isosceles trapezoid. Find the $\mathrm{m} \angle 1$ and $\angle 2$.

5. MATH is an isosceles trapezoid with $\overline{\mathrm{AT}}\left|\mid \overline{\mathrm{MH}}\right.$. If $\mathrm{m} \angle \mathrm{M}=(3 x-9)^{\circ}$ and $\mathrm{m} \angle \mathrm{H}=(\mathrm{x}+3)^{\circ}$, find the value of ' x '.
6. Let $\mathrm{AC}=25$ and $\mathrm{DB}=5 \mathrm{x}$.

7. If $\mathrm{EH}=\mathrm{FG}$, and $\mathrm{m} \angle \mathrm{E}=65^{\circ}$, then $\mathrm{m} \angle \mathrm{G}=$? and $\mathrm{m} \angle \mathrm{GKJ}=$?

8. $K B=12$ and $M F=30$. Find $F B$.

9. $J N=10$, and $N L=14$. Find $K M$.

10. Find the value of x.

11. The cross section of an attic is in the shape of an isosceles trapezoid, as shown in the accompanying figure. If the height of the attic is 9 feet, $B C=12$ feet, and $A D=28$ feet, find the length of $\overline{A B}$ to the nearest foot.

12. The accompanying diagram shows ramp $\overline{R A}$ leading to level platform $\overline{A M}$, forming an angle of 45° with level ground. If platform $\overline{A M}$ measures 2 feet and is 6 feet above the ground. Find RA.

13. If $\mathrm{PQ}=15$, and $\mathrm{SR}=9$, find ST and PS .

Chapter 6 (Review) - Day 6

Warm - Up

In the diagram below of trapezoid RSUT, $\overline{R S} \| \overline{T U}$,
X is the midpoint of $\overline{R T}$, and V is the midpoint of $\overline{S U}$.

If $R S=30$ and $X V=44$, what is the length of $\overline{T U}$?

1) 37
2) 58
3) 74
4) 118

Write the missing terms in the unlabeled sections.

SUMMARY

PARALLELOGRAMS (rectangles, squares, and rhombi):

1) Opposite sides of a parallelogram are congruent.
2) Opposite angles of a parallelogram are congruent.
3) Consecutive angles in a parallelogram are supplementary.
4) The diagonals of a parallelogram bisect each other.

RECTANGLES:

1) Opposite sides are congruent (they equal each other).
2) Opposite angles are congruent (they equal each other).
3) Consecutive angles are supplementary (they add up to 180).
4) Diagonals bisect each other (the parts are equal).
5) Diagonals are congruent (they equal each other).
6) All four corner angles are 90°.

SQUARES:

1) Opposite sides are congruent (they equal each other).
2) Opposite angles are congruent (they equal each other).
3) Consecutive angles are supplementary (they add up to 180).
4) Diagonals bisect each other (the parts are equal).
5) Diagonals are congruent (they equal each other).
6) All four corner angles are 90°.
7) Diagonals perpendicular (the form right angles in the middle).
8) Diagonals bisect angles (the angles equal to each other).

RHOMBI:

1) Opposite sides are congruent (they equal each other).
2) Opposite angles are congruent (they equal each other).
3) Consecutive angles are supplementary (they add up to 180).
4) Diagonals bisect each other (the parts are equal).
5) Diagonals perpendicular (the form right angles in the middle).
6) Diagonals bisect angles (the angles are equal to each other).
7) All four sides are congruent.

8) The diagonals are NOT congruent.

ISOSCELES TRAPEZOIDS:

Median $=1 / 2($ base + base $) \quad \mathbf{2 m}=\mathbf{b}_{1+} \mathbf{b}_{\mathbf{2}}$

1) Lower two base angles are congruent (they equal each other).
2) Upper two base angles are congruent (they equal each other).
3) The diagonals are congruent (they equal each other).
4) opposite angles are supplementary (they add up to 180).

Angles in Polygons

1. Find the sum of the interior angles of a heptagon?

2. Each interior angle of a regular convex polygon measures $\mathbf{1 5 0}^{\circ}$. How many sides does the polygon have?
3. The sum of the interior angles of a convex regular polygon measures 1620°. How many sides does the polygon have?
4. How many sides does a polygon have if each exterior angle measures 36° ?
5. Find the measure of each exterior angle of regular hexagon ABCDEF?

6. Find the value of x.

7. Find the value of x.

Properties of Quadrilaterals

List all the properties of a parallelogram below:

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad

The rectangle has all the properties of the parallelogram AND

1. \qquad
2. \qquad

The rhombus has all the properties of the parallelogram AND

1. \qquad
2. \qquad
3. \qquad

The square has all the properties of the parallelogram AND

1. \qquad
2. \qquad
3.
4. \qquad
5. \qquad
Complete the Venn diagram using the letter of the word(s) provided.
A. Trapezoid
B. Parallelogram
C. Rhombus
D. Square
E. Rectangle
F. Quadrilateral
G. Isosceles Trapezoid

Property								
Both pairs of opposite sides are congruent.								
Both pairs of opposite angles are congruent.								
Has 4 sides.								
Has 4 angles.								
Both diagonals are congruent.								
4 congruent sides.								
4 congruent angles.								
The diagonals bisect the opposite angles.								
All consecutive angles are supplementary.								
Both pairs of opposite sides are parallel.								
Exactly one pair of opposite sides are parallel.								
The diagonals are perpendicular.								
The diagonals bisect each other.								
Exactly one pair of opposite sides congruent.								
4 right angles.								

Properties of Quadrilaterals - True or False

Mark each as true or false. Remember, that a property is true only if it is true all the time.

1. Parallelogram
\qquad a. both pairs of opposite sides are parallel
\qquad b. both pairs of opposite sides are congruent
\qquad c. both pairs of opposite angles are congruent
\qquad d. all consecutive angles are supplementary
\qquad e. the diagonals are congruent
\qquad f. the diagonals bisect each other

2. Rhombus

\qquad a. all consecutive angles are supplementary
\qquad b. all consecutive sides are congruent
\qquad c. all consecutive sides form right angles
\qquad d. the diagonals are perpendicular
\qquad e. the diagonals bisect the opposite angles

\qquad f. exactly one pair of opposite sides is parallel

3. Rectangle

\qquad a. the diagonals are perpendicular
\qquad b. the diagonals are congruent
\qquad c. the diagonals bisect the opposite angles
\qquad d. the diagonals bisect each other

\qquad e. all consecutive angles are congruent
\qquad f. all consecutive angles are supplementary
\qquad a. both pairs of opposite sides are parallel
\qquad b. the diagonals are congruent
\qquad c. the diagonal bisect each other
\qquad d. the diagonal bisect the opposite angles

\qquad e. it can never be drawn as a concave polygon
\qquad f. any pair of upper and lower base angles will be supplementary
6. Isosceles Trapezoid
\qquad a. the diagonals are congruent
\qquad b. the diagonals bisect each other
\qquad c. the diagonals bisect the opposite angles
d. exactly one pair of opposite sides are parallel
 e. exactly one pair of opposite sides is congruent
f. any pair of upper and lower base angles will be supplementary and the upper and lower base angles will be congruent.

7. Quadrilateral

\qquad a. has 3 sides
\qquad b. has 5 angles
\qquad c. can be drawn as either a convex or a concave polygon
\qquad d. has four diagonals
\qquad e. the one shown could be named ABCD

8. Square

\qquad a. any two consecutive sides are congruent
\qquad b. any two consecutive angles are supplementary
\qquad c. the slopes of the diagonals are opposite reciprocals
\qquad d. the slopes of any two consecutive sides are opposite reciprocals
\qquad e. the diagonals split opposite angles into two 45° angles.
\qquad f. is both a rectangle and a rhombus at the same time

Parallelograms

1. In $\square \mathrm{ABCD}, \angle \mathrm{A}=68^{\circ}$. Find the measure of the other angles. Draw a sketch to help you.
a. $\angle \mathrm{B}=$ \qquad b. $\angle \mathrm{C}=$ \qquad
c. $\angle \mathrm{D}=$ \qquad
2. In $\square \mathrm{ABCD}, \angle \mathrm{A}=x, \angle \mathrm{~B}=2 x+60 . \angle \mathrm{D}=$ \qquad . Draw a sketch to help you.
3. Use parallelogram CDFB to find each measure.
$\mathrm{FD}=$ \qquad $\mathrm{BF}=$ \qquad
$\mathrm{m} \angle \overline{\mathrm{CBF}}=$
$\mathrm{m} \angle \mathrm{BCD}=$ \qquad
CF= \qquad

4. Given: Parallelogram $A B C D$
with $\overline{A B}=20, \overline{B D}=18, \overline{A C}=24$
Find the perimeter of $\triangle D E C$. \qquad

Rectangles

5. In rectangle $A B C D, C B=6, A B=8$ Find the missing lengths:
a. $A D$
b. $C D$
c. $E C$
d. $A E$

e. $D E$
f. $E B$
g. $D B$

6. Given: $J K L M$ is a rectangle. $J K=16 \quad K L=12 \quad m \angle 1=53^{\circ}$
a. $m \angle J K L=$ \qquad c. $m \angle 2=$ \qquad e. $m \angle J N K=$ \qquad
b. $J L=$ \qquad d. $m \angle 4=$ \qquad
f. $M N=$ \qquad
7. $A B C D$ is a rectangle. If $A B=24, B C=10$, and $\angle 1=50^{\circ}$, find the following:

a. $C D=$ \qquad
d. $B D=$ \qquad g. $\angle \mathrm{DAB}=$ \qquad
b. $A D=$ \qquad e. $A X=$ \qquad h. $\angle 3=$
c. $A C=$ \qquad f. $B X=$ \qquad i. $\angle \mathrm{AXB}=$ \qquad
8. Quadrilateral ABCD is a rectangle. Find each Measure if $\mathbf{m} \angle 2=70^{\circ}$.
$m \angle 1$
$m \angle 7$
$m \angle 3$
$m \angle 5$
$m \angle 6$
$m \angle 8$

Rhombus

9. Use rhombus STPK to find each measure.
$\mathrm{TP}=$
$\mathrm{PB}=$
\qquad
$\mathrm{KT}=$
$\mathrm{n} \angle \overline{K T P}=$
$\mathrm{m} \angle \mathrm{KBP}=$

10. Given: $P Q R S$ is a rhombus. $P Q=4 \quad m \angle P Q R=60^{\circ}$
a. $Q R=$ \qquad
c. $m \angle 2=$ \qquad
e. $S T=$ \qquad
b. $m \angle 3=$ \qquad
d. $P T=$ \qquad
f. $m \angle S P Q=$ \qquad

11. $A B C D$ is a rhombus. If $A B=6, X C=3$, and $\angle D A B=120^{\circ}$, find the following:
a. $B C=$
d. $\angle A X B=$ \qquad g. $\angle 3=$ \qquad
b. $\angle A D C=$
e. $\angle 1=$
h. $\angle 4=$ \qquad
c. $\angle D C B=$
f. $\angle 2=$ \qquad
i. $A X=$ \qquad

12. The diagonals of a rhombus are 32 cm and 126 cm . Find the perimeter of the rhombus.

Square

13. Use Square SQUR to find each measure.

$$
\begin{aligned}
& \mathrm{EQ}= \\
& \mathrm{SU}= \\
& \mathrm{m} \angle \mathrm{SQU}= \\
& \mathrm{m} \angle \mathrm{REU}= \\
& \mathrm{m} \angle \mathrm{SQE}=
\end{aligned}
$$

14. KLMN is a square and $\mathrm{NO}=6$.

Find:
$m \not Q K L=$ \qquad
$m \angle M O L=$ \qquad
Perimeter $K L M N=$ \qquad

15. $A B C D$ is a square. If $A B=16$ and $A C=16 \sqrt{2}$, find the following:
a. $\mathrm{BC}=$
b. $B D=$
\qquad
c. $A D=$
d. $\angle 1=$ \qquad
e. $\angle 2=$
f. $\angle \mathrm{AXB}=$
g. $\angle B X C=$
h. $\angle 4=$
\qquad

16. The perimeter of a square measures 72 cm . Find the length of the diagonal.

Trapezoids

17. WXYZ is an isosceles trapezoid. What are values of x and y ?

18. Find the length of the midsegment.

19. Given: An isosceles trapezoid with a perimeter of 120 cm .
Find x.

20. TRAP is an isosceles trapezoid. $\angle \mathrm{RTP}=70^{\circ}, \mathrm{AS}=4$, and $\mathrm{SP}=7$. Find the following:
a. $\angle \mathrm{TRA}=$ \qquad b. $\angle \mathrm{RAT}=$ \qquad
c. $\angle \mathrm{APT}=$ \qquad d. $\angle \mathrm{TRP}=$ \qquad
e. $\angle \mathrm{RAP}=$ \qquad f. $\angle \mathrm{TSP}=$ \qquad
g. $R P=$ \qquad h. $\angle \mathrm{ASP}=$ \qquad
i. $\mathrm{AP}=$ \qquad j. $\mathrm{RS}=$ \qquad

21. Find the length of base $\overline{A B}$ of trapezoid $A B C D$.

Special	Diagonals		Diagonals Bisect	
Quadriateral	Congruent	Perpendicular	Each Other	Angles
Parallelogram	Sometimes	Sometimes	Always	Sometimes
Rectangle	Always	Sometimes	Always	Sometimes
Rhombus	Sometimes	Always	Always	Always
Square	Always	Always	Always	Always
Trapezoid	Sometimes	Never	Never	Never
Isosceles Trapezoid	Always	Never	Never	Never
Kite	Never	Always	Only one diagonal	Only one angle

Property	Rectangle	Rhombus	Square
1. All the properties of a parallelogram?	Yes	Yes	Yes
2. Equiangular (4 right corner angles?)	Yes	No	Yes
3. Equilateral (4 congruent sides?)	No	Yes	Yes
4. Diagonals bisect angles?	No	Yes	Yes
5. Diagonals congruent?	Yes	No	Yes
6. Diagonals perpendicular?	No	Yes	Yes

[^0]: You Try It!
 The sum of the interior angles of a convex regular polygon measure 3240°, how many sides does the polygon have?

[^1]: You Try It!
 How many sides does a regular polygon have if each interior angle measures 160° ?

