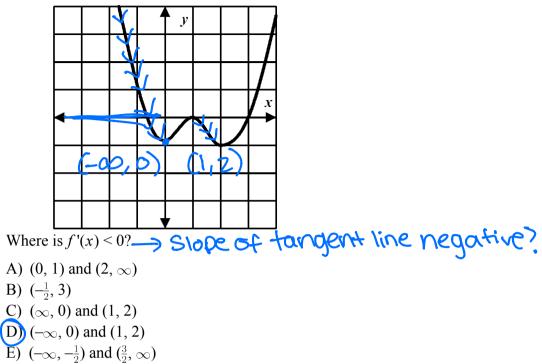
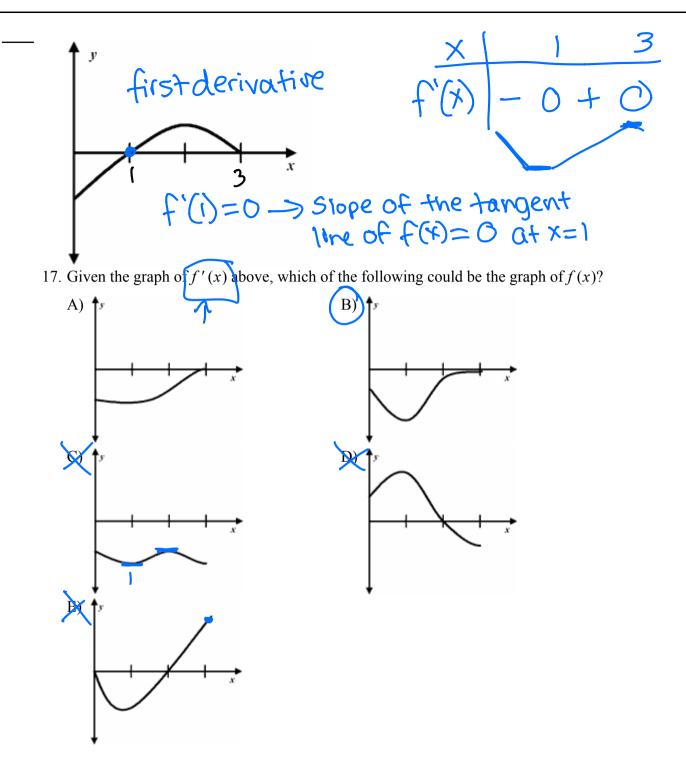
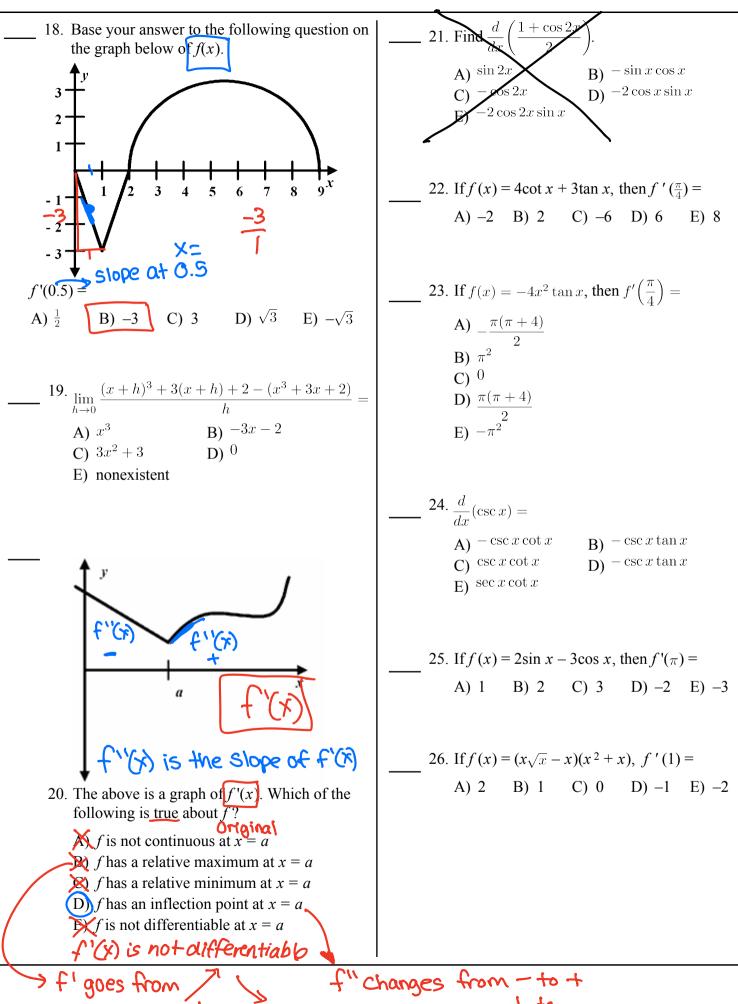

Name


AP Calc Practice Set 1 Derivatives


1. If $f(x) = 2x \cdot e^{x^2}$, find $f'(x)$.	5. If $f(x) = \ln(\sin(3x))$ find $f'(x)$.				
A) $(4x)e^{x^2}$ C) $(4x^2)e^{x^2}$ B) $(4x^2+2)e^{x^2}$ D) $(4x^2+2)x^2e^{x^2-1}$	A) $3 \tan(3x)$ B) $\cot(3x)$				
C) $(4x^2)e^{x^2}$ D) $(4x^2+2)x^2e^{x^2-1}$	C) $3 \csc(3x)$ D) $\tan(3x)$				
E) $(4x+2)e^{x^2}$	E) $3 \cot(3x)$				
	,				
2. If $g'(x) = f(x)$ and $f'(x) = g(2x)$, then $\frac{d^2}{dx^2}(x(2x^2)) =$ A) $4f(2x^2 + 8x^2g(2x^2))$ B) $4f(2x^2) + 8x^2g(4x^2)$ C) $4f(4x^2) + 8x^2g(2x^2)$ D) $4f(2x^2) + g(4x^2)$	6. Find $\frac{dy}{dx}$ if $x^5y + xy^2 = 4$				
$\frac{d}{dx^2}\left(\mathbf{x}^{(2x^2)}\right) =$	(5x+y)				
A) $4f(2x) + 8x^2g(2x^2)$	A) $\frac{(5x+y)}{(x^5+2xy)}$				
B) $4f(2x^2) + 8x^2g(4x^2)$	B) $\frac{y(5x+y)}{(x^5+2x)}$				
C) $4f(4x^2) + 8x^2g(2x^2)$					
D) $4f(2x^2) + g(4x^2)$	C) $\frac{-y(5x^4+y)}{(x^5+2xy)}$				
E) $g(4x^2)$	D) $\frac{-y(5x+y)}{(x^4+2)}$				
	($x^4 + 2$) E) $5x^4y + y^2$				
$ \begin{bmatrix} \mathbf{r}(-2) & \mathbf{r}(-2) & \mathbf{r}(-2) \\ \mathbf{r}(-2) & \mathbf{r}(-2) & \mathbf{r}(-2) \end{bmatrix} $	$L_{j} = \sum_{j=1}^{j} \sum_{j=1}^$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
1 -1 -3 2 4	$dy (\pi \pi)$				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ 7. \text{ If } x \sin y + y \sin x = 0, \text{ then } \frac{dy}{dx} \text{ at } \left(\frac{\pi}{4}, \frac{\pi}{4}\right) =$				
2. Using the table share find $d \left[c(2), (2) \right]$	A) $^{-1}$ B) 1 C) 0 D) $\frac{\pi}{4}$ E) $-\frac{\pi}{4}$				
3. Using the table above find $\frac{d}{dx} [f(x^2)g(x^2)]$ at	4 4				
x = 1.					
A) 6 B) 8 C) $^{-4}$ D) $^{-10}$ E) $^{-20}$	8. If $25 = x^2 + y^2$ what is the slope of the tangent				
	line when $x = 5$?				
A d	A) ⁻¹ B) ⁰				
$- 4. \frac{d}{dx} (\sqrt{e^x}) =$	C) ¹ D) $\sqrt{2}$				
A) $\underline{e^x}$	E) Infinite slope				
$2\sqrt{e^x}$					
B) $\frac{e^{\sqrt{x}}}{2\sqrt{x}}$					
A) $\frac{e^x}{2\sqrt{e^x}}$ B) $\frac{e^{\sqrt{x}}}{2\sqrt{x}}$ C) $\frac{e^x}{\sqrt{e^x}}$					
\sqrt{x}					
D) $\frac{2\sqrt{x}}{e^x}$					
E) None of the above					


AP Calc Practice Set 1

16. Base your answer to the following question on the graph below of f(x).

----- 27. If
$$f(x) = \sqrt{\frac{x^3 - 1}{x^3 + 1}}$$
, then $f'(2) =$
A) $\frac{\sqrt{7}}{3}$
B) $\frac{3}{2\sqrt{7}}$
C) $\frac{4}{9\sqrt{7}}$
D) $\frac{2\sqrt{7}}{3}$
E) $\sqrt{\frac{11}{13}}$

28. If
$$y = e^{-x} \sin 2x$$
, $\frac{dy}{dx} =$
A) $-e^{-x}(2\sin 2x + \cos 2x)$
B) $-e^{-x}(\cos 2x - \sin 2x)$
C) $2e^{-x} \cos 2x$
D) $-e^{-x}(\sin 2x + \cos 2x)$
E) $-e^{-x}(\cos 2x)$

29. If
$$f(x) = 2e^x - 3^x$$
, then $f'(0) =$
A) $^{-1}$
B) 5
C) $2 - \ln 3$
D) $2 - 3 \ln 3$
E) None of the above

$$\begin{array}{l} \textbf{30. If } y = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \text{ then } y' = \\ \textbf{A) 1} \\ \textbf{B) } \frac{1}{e^{2x} + e^{-2x}} \\ \textbf{C) } \frac{2}{(e^x + e^{-x})^2} \\ \textbf{D) } \frac{4}{(e^x + e^{-x})^2} \\ \textbf{E) } 0 \end{array}$$

31. The position of a particle at time t is given by $s(t) = e^{t^2}$. What is the velocity of the particle at t = 1? A) 2e B) 1 C) e D) 0 E) $2e^2$ 32. For what value of c and k is the function $f(x) = \begin{cases} 2x + c, x \le -1 \\ kx^2, x > -1 \end{cases}$ both differentiable and continuous for all real values of x. A) c = -1, k = 1 B) c = 1, k = -1C) c = 1, k = 1 D) c = 2, k = -2E) c = -2, k = -2 33. Let f be a differentiable function, defined for all real numbers x, with the following properties.

I. $f'(x) = ax^3 + bx^2$ II. f'(1) = -1 and f''(1) = 6III. $\int_0^1 f(x) = \frac{13}{20}$

Find f(x). Show your work.

34. The depth, in feet, of the water in a pond is a differentiable function D of position x. The table below shows the depth of the water recorded at every 2 meters.

x(feet)	0	2	4	6	8	10
D(x)(meters)	10	28	32	30	26	22

(a) Use data from the table to find an approximation for D'(6). Show all work and include units of measure.

(b) Approximate the average depth, in feet, of the water over the interval 0 < x < 10 meters by using a trapezoidal approximation with subintervals of length $\Delta x = 2$. (c) A student proposes that

 $f(x) = 10 + 15xe^{-0.25x}$ is a model for the depth of the water as a function of position, where x is measured in meters and f(x) in feet. Find f'(6).

(d) Use the function f as defined in part (c) to find the average value, in feet, of f(x) over the interval 0 < x < 10.

35. Let f be a function defined by

$$f(x) = \begin{cases} -x^3 + 3x & \text{for } x \le 2\\ 2x^2 + kx + p & \text{for } x > 2 \end{cases}$$

(a) For what values of k and p will f be continuous and differentiable at x = 2?
(b) For the values of k and p found in part (a), on what interval(s) is f increasing?
(c) Evaluate ∫₁³ f(x)dx

 $\begin{array}{l}
0 \\
Product Rule \\
u = 2x & u' = 2 \\
V = e^{x^2} & v' = 2x \cdot e^{x^2} \\
chain \\
Rule \\
(1,v' + u' \cdot V) \\
2x \cdot (2x \cdot e^{x^2}) + 2(e^{x^2}) \\
4x^2 e^{x^2} + 2e^{x^2} \\
e^{x^2}(4x^2 + 2)
\end{array}$

ANS: B

(2) Second derivative Take derivative of $g(2x^2)$ twice $\frac{d}{dx} g(2x^2) = g'(2x^2) \cdot 4x$ $f(2x^2) \cdot 4x$ $\frac{d}{dx} f(2x^2) \cdot 4x$ $\frac{d}{dx} f(2x^2) \cdot 4x$ $\frac{d}{dx} f(2x^2) \cdot 4x$ $\frac{d}{dx} (2x^2) \cdot 4x \cdot 4x$ $\frac{d}{dx} (2x^2) + 16x^2 f'(2x^2)$ $g(4x^2)$

$$\begin{array}{c} (3) \\ d_{x} \left[f(x^{2}) \cdot g(x^{2}) \right] \\ u & \sqrt{} \\ u^{2} = f(x^{2}) \cdot 2x \\ \sqrt{} = g(x^{2}) \\ \sqrt{} = g(x^{2}) \cdot 2x \end{array}$$

$$u' \cdot v + v' \cdot u$$

$$f'(x^{2}) \cdot 2x \cdot g(x^{2}) + g'(x^{2}) \cdot 2x \cdot f(x^{2})$$

$$f'(i^{2}) \cdot 2(i) \cdot g(i^{2}) + g'(i^{2}) \cdot 2(i) \cdot f(i^{2})$$

$$[f'(i) \cdot 2 \cdot g(i)] + g'(i) \cdot 2 \cdot f(i)]$$

$$[2 \cdot 2 \cdot (-3)] + [4 \cdot 2 \cdot (-i)]$$

$$[-12] + [-8]$$

$$(-20)$$

$$u^{-1/2} = \frac{1}{u^{1/2}}$$

$$\frac{d}{dx}(nu)$$
 $\frac{d}{dx}(nu)$ $\frac{d}{dx}(nu)$

derivative U¹² derivative

$$\frac{1}{2}u^{1/2} \cdot e^{X}$$

$$\frac{1}{2\sqrt{U}} \cdot \frac{e^{x}}{1} = \frac{1}{2\sqrt{e^{x}}} \cdot \frac{e^{x}}{1}$$

Ans: $A : \frac{e^{x}}{2\sqrt{e^{x}}}$

(5) Three function $f'(x) \rightarrow$ chain rule 3 times Outer: $\ln(u)$ / $u=\sin(3x)$ Derivative $\frac{1}{u}$ inner: Gin(V) v= 3x Derivative (OS(V) Inner-Inner (3×) Derivative = 3 $\frac{1}{\sin(3x)}$. $\cos(3x) \cdot 3$ $\frac{3\cos(3x)}{\sin(3x)} = 3\cdot\cot(3x)$ Ans: E (6) Implicit Differentiation \rightarrow treat y as a function of x and don't forget Chain Rule!

$$x^{5}y + xy^{2} = 4$$

 $u \vee u \vee 0$
 $u \vee + u' \vee$

 $\chi^{5} \cdot \frac{dy}{dx} + 5x^{4}y + (x \cdot 2y \cdot \frac{dy}{dx}) + 1y^{2} = 0$

$$x^{5} \frac{dy}{dx} + 2xy \frac{dy}{dx} + 5x^{4}y + y^{2} = 0$$

$$-5x^{4}y - y^{2} =$$

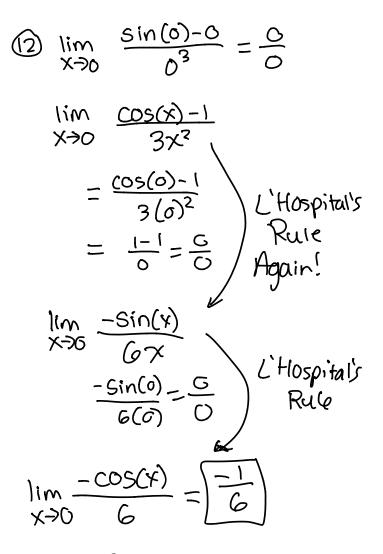
$$\frac{dy}{dx} (yx^{5} + 2xy) = -5x^{4}y - y^{2}$$

$$(x^{5} + 2xy) - (x^{5} + 2xy)$$

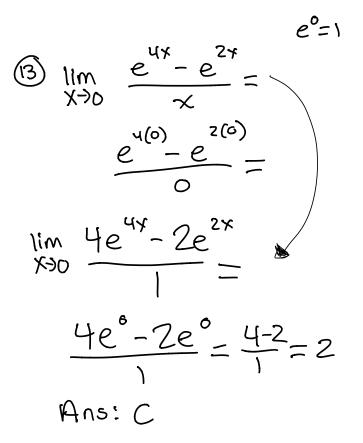
$$\frac{dy}{dx} = -\frac{y(5x^{4} + y)}{(x^{5} + 2xy)}$$

$$\frac{dy}{dx} = -\frac{y(5x^{4} + y)}{(x^{5} + 2xy)}$$

$$ANS: C$$


(7) Implicit Differentiation $\frac{x \cdot \sin y}{v} + \frac{1}{v} \cdot \sin x = 0$ x= 1951 y= 25 $x \cdot \cos y \cdot \frac{dy}{dx} + 1 \cdot \sin y + y \cdot \cos x + \frac{dy}{dx} \sin x = 0$ $\frac{\pi}{4} \cdot \cos\left(\frac{\pi}{4}\right) \frac{dy}{dx} + \sin\left(\frac{\pi}{4}\right) + \frac{\pi}{4} \cos\left(\frac{\pi}{4}\right) + \frac{dy}{dx} \sin\left(\frac{\pi}{4}\right) = 6$ $\left(\frac{\pi}{4}\left(\frac{\sqrt{2}}{2}\right)\frac{dy}{dx}+\left(\frac{\sqrt{2}}{2}\right)+\frac{\pi}{4}\left(\frac{\sqrt{2}}{2}\right)+\frac{dy}{dx}\left(\frac{\sqrt{2}}{2}\right)=0$ $\begin{pmatrix} dy \\ dy \\ dy \end{pmatrix} \begin{bmatrix} t \\ t \\ t \\ t \\ t \\ z \end{bmatrix} + \frac{t 2}{2} + \frac{t 2}{2} \end{bmatrix} + \begin{pmatrix} t \\ dz \\ z \\ z \\ z \end{bmatrix} + \begin{pmatrix} t \\ dz \\ z \\ z \\ z \end{bmatrix} = 0$ ☆(A) + A = O - A $\frac{dy}{dx}(A) = -A$ (A) (A) $\frac{dy}{dx} = -1$ Ans: A

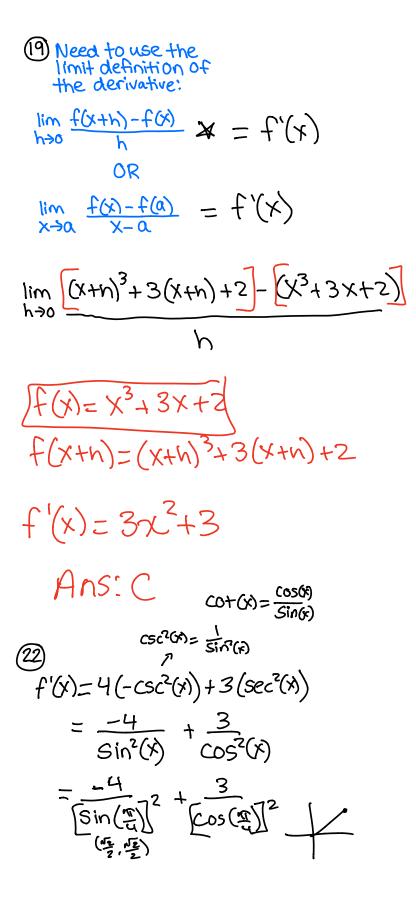
L'Hospital's Rule for Limits:


It:

 $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}, \text{ then}$ $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ So, if you get $\frac{0}{0}$, try taking the derivative and substituting the derivative and substituting again: \Rightarrow Don't do quotient rule, just do f'(x) and g'(x) separately

(i)
$$4 \sin(2(\pi) - \pi)$$

 $2(\pi) - \pi$
 $= \frac{4 \sin(\pi - \pi)}{\pi - \pi} = \frac{4 \sin(6)}{6} = \frac{6}{0}$
 $\frac{1}{\pi - \pi} = \frac{4 \sin(6)}{6} = \frac{6}{0}$
 $\frac{1}{\pi - \pi} = \frac{4 \cos(2x - \pi)}{2}$
 $\frac{1}{2} \frac{4 \cos(2x - \pi)}{2}$
 $\frac{4 \cos(2x - \pi)}{1}$
 $\frac{4 \cos(2x - \pi)}{1}$
 $\frac{4 \cos(2(\pi) - \pi)}{1}$
 $\frac{4 \cos(6)}{1} = \frac{4(1)}{1} = 4$
Ans: D



$$\begin{array}{c} (5) \lim_{X \to \infty} \frac{\ln(x)}{x^2} & \longrightarrow \frac{\ln(\infty)}{(\infty)^2} = \frac{\infty}{66} \\ L'Hospital's Rule Extended: & \frac{1}{x} = \frac{1}{66} = \frac{1}{66} \\ \text{If } \lim_{X \to \infty} \frac{f(x)}{g(x)} = \frac{\infty}{66} \\ \text{You can apply 2'Hospital's Rule and see if the following situations apply:} \\ \frac{\#}{\pm 60} = 0 \end{array}$$

$$\frac{\pm \infty}{\#} = \pm \infty$$

$$= \frac{-4}{\binom{NZ}{2}^{2}} + \frac{3}{\binom{NZ}{2}^{2}}$$

= $\frac{-4}{\binom{2}{4}} + \frac{3}{\binom{2}{2}}$
= $\frac{-4}{\binom{4}{4}} + \frac{3}{\binom{4}{2}}$
= $-\frac{4}{\binom{4}{2}} + \frac{3}{\binom{4}{2}}$
= $-8 + 6 = -2$
Araswer = A

$$\begin{array}{l} \textcircled{3} f(x) = -4x^{2} \tan x \\ u = \sqrt{x} \\ f'(x) = -4x^{2} (\sec^{2}(x)) + (-8x) \tan(x) \\ = -4\left(\frac{\pi}{4}\right)^{2} \frac{1}{\left(\cos(\frac{\pi}{4})\right)^{2}} + (-8\left(\frac{\pi}{4}\right) \tan(\frac{\pi}{4}) \\ -4\left(\frac{\pi}{16}\right) \cdot \frac{1}{\left(\frac{\sqrt{2}}{2}\right)^{2}} + (-2\pi)(1) \\ -\frac{4\pi^{2}}{16} \cdot \left(\frac{1}{\frac{2}{4}}\right) - 2\pi \\ -\frac{-4\pi^{2}}{16} \cdot 2 \\ -\frac{-8\pi^{2}}{16} - 2\pi \\ = -\frac{\pi^{2}}{2} - 2\pi \\ \begin{pmatrix} z \\ z \end{pmatrix} \end{aligned}$$

$$-\frac{\pi^{2}-4\pi}{2}$$

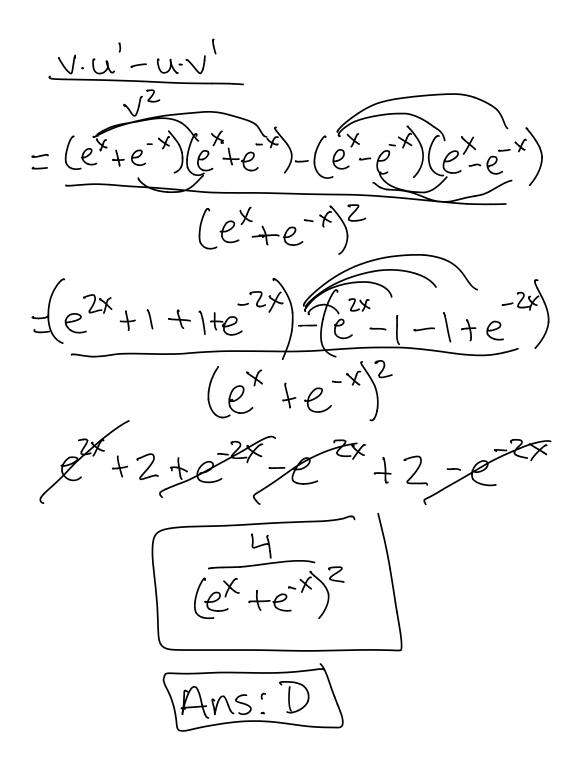
$$=-\frac{\pi^{2}-4\pi}{2}$$

$$=\frac{\pi(-\pi-4)}{2}$$

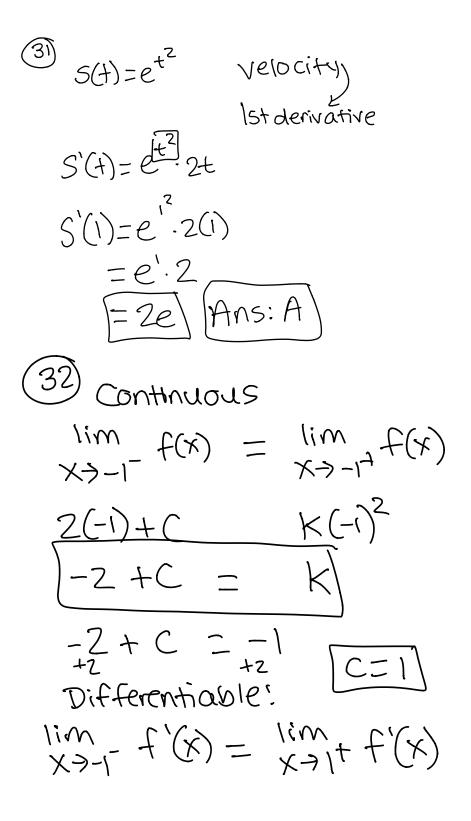
$$=\frac{\pi(-\pi-4)}{2}$$
ANS:
A

(24) Just one to know!
(A)

$$A^{150}$$
:
 $d_{x}(sec(x)) = sec(x) \cdot tan(x)$

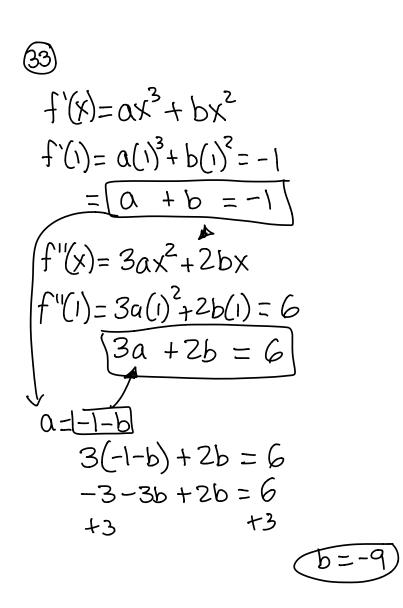

(2)
$$f(x) = 2\sin x - 3\cos x$$

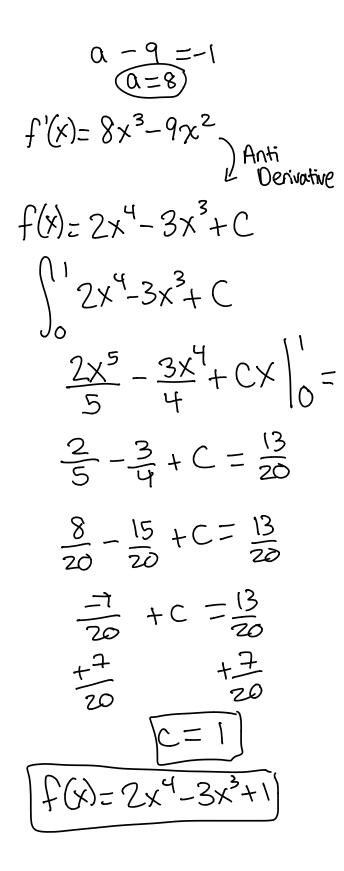
 $f'(x) = 2\cos x - 3(-\sin x)$
 $= 2\cos x + 3\sin x$
 $f'(\pi) = 2\cos(\pi) + 3\sin(\pi)$
 $= 2(-1) + 3(0)$
 $= (-2)$
Ans: D


Voutside . inside w

$$\frac{\sqrt{4}}{2} \frac{\sqrt{4}}{\sqrt{2}} \frac{\sqrt{4}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$$

$$\frac{1}{2} \sqrt{4} \sqrt{2} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2$$


$$= \frac{12}{27\sqrt{17}} = \frac{3}{8(4)} = \frac{4}{9\sqrt{17}}$$
(Ars: C)
(Ars: C)



2KX 2 $\frac{2}{2} = \frac{2k(-i)}{2}$ K=-1

ANS: B

(34) a) Approximating a derivative: Average Rate of change as close as possible $\frac{D(8) - D(4)}{8 - 4} = \frac{26 - 32}{4}$ $= \frac{-6}{4} = -1.5 \frac{\text{meters}}{\text{frot}}$ b) X 0 2 4 6 8 10 D(x) 10 28 32 30 26 22 Trapezoids $\frac{1}{10-0} \int_{0}^{10} D(x) dx \qquad \Delta x (Aug of the endpoints)$ (2)(19)+2(30)+2(31)+2(28)+2(24)38 + 60 + 62 + 56 + 48 160+104=264 $\frac{1}{10}(264) = 26.4$ c) n Deriv (10+15×e^{-.25×}, ×, 4) = -1.673d) $\frac{1}{10} \int_{0}^{10} (10 + 15 \times e^{-.25 \times 1}) dx$ = 27.105

(35)
(a)

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x)$$

$$-x^{3} + 3x = 2x^{2} + Kx + p$$

$$-(2)^{3} + 3(2) = 2(2)^{2} + K(2) + p$$

$$-8 + 6 = 8 + 2K + p$$

$$-8 - 8 + 2K + p$$

$$-2 = 8 + 2K + p$$

$$-2 = 8 + 2K + p$$

$$P = -10 - 2K + p$$

$$P = -10 - 2K + p$$

$$P = -10 - 2K + K$$

$$-3(2)^{2} + 3 = 4X + K$$

$$-3(2)^{2} + 3 = 4(2) + K$$

$$-3(2)^{2} + 3 = 4(2) + K$$

$$-3(2)^{2} + 3 = 8 + K$$

$$-9 = 8 + K$$

$$-9 = 8 + K$$

$$-9 = 8 + K$$

$$-8 = -8$$

$$K = -17$$

$$P = -10 - 2(-17)$$

$$P = -10 - 2(-17)$$

$$P = -10 + 34 = [24]$$

$$f(x) = \begin{cases} -x^{3} + 3x & x \le 2\\ 2x^{2} - 17 + x + 24 & x > 2 \end{cases}$$

Intervals

 $\begin{array}{c} (-1,1) \text{ and } (4.25,\infty) \\ \int_{1}^{3} f(x) = \int_{1}^{2} -x^{3} + 3x_{a} + \int_{2}^{3} 2x^{2} - 17x + 24_{dx} \\ \cdot 75 & -5.833 = -5.083 \end{array}$