A	Quick	Guide 1	0	Curve	Sketc	hing:
---	-------	---------	---	-------	-------	-------

graph feature	f(x)	f'(x)	f"(x)	Notes
rising (L to R)	slope > 0	+		
falling (L to R)	slope < 0	-		
maximum	slope = 0	= 0 + on L - on R	– at x _{max}	derivative may not exist at a max or min, e.g.
minimum	slope = 0	= 0 - on L + on R	+ at × _{min}	
inflection pt.	Curvature changes: → → →		= O potential inflection point	
concave up	レノ	- +	+	
concave down	$\langle \rangle$	+ -	-	

Note: You can use this chart to help you solve LOTS of problems, even if you are not asked to find the curve.

Make a sign chart for this function. What can you say about the first and second derivative.

Example 2:

The first derivative of a function is given by the equation below:

$$f'(x) = x(x+2)(x-3)^2$$

This is telling methe Glope [1]

a) Find the values where the function has a minimum or maximum:

b) On what intervalls) is the function increasing? On what intervalls) is the function decreasing?

Example 3:

Find an interval where the function below is both decreasing and concave up:

$$f(x) = \chi^{3} + 7 \chi^{2} + 8 \chi$$

$$f'(x) = 3\chi^{2} + 14\chi + 8 \qquad 0 = 3\chi^{2} + 14\chi + 8$$

$$f'(x) = 6\chi + 14 \qquad (3\chi^{2} + 12\chi) + (2\chi + 8)$$

$$3\chi(\chi + 4) + 2(\chi + 4)$$

$$3\chi(\chi + 4) + 2(\chi + 4)$$

$$\chi = \frac{-4}{5} - \frac{14}{5} - \frac{2}{3}$$

$$f(x)$$

$$f(x) + 0 + \frac{POIs}{5}$$

$$f'(x) + 0 + \frac{POIs}{5} - \frac{14}{5} - \frac{2}{3}$$

$$f(x) + \frac{POIs}{5} - \frac{14}{5} - \frac{2}{3}$$