A Quick Guide to Curve Sketching:

Note: You can use this chart to help you solve LOTS of problems, even if you are not asked to find the curve.

Example 1: The graph of $f(x)$ is shown below.

Original 2,4 POlIs

$$
1,3,5
$$

critical numbers
Make a sign chart for this function. What can you say about the first and second derivative.

The first derivative of a function is given by the equation below:

$$
f^{\prime}(x)=x(x+2)(x-3)^{2}
$$

* This is telling me the slope!!!
a) Find the values where the function has a minimum or maximum:

\min at $x=0$
\max at $x=-2$
not max or min
b) On what intervals) is the function increasing? On what intervals) is the function decreasing?

$$
\begin{aligned}
& I:(-\infty,-2) \cup(0,3) \cup(3, \infty) \\
& D:(-2,0)
\end{aligned}
$$

Example 3:
Find an interval where the function below is both decreasing and concave up:

$$
\begin{aligned}
& f(x)=x^{3}+7 x^{2}+8 x \\
& f^{\prime}(x)=3 x^{2}+14 x+8 \\
& f^{\prime \prime}(x)=6 x+14 \\
& =\left(3 x^{2}+12 x\right)-(2 x+8) \\
& 3 x(x+4)+2(x+4) \\
& \begin{array}{c}
(3 x+2)(x+4) \\
x=\frac{2}{3} \\
x=-4
\end{array} \\
& \begin{array}{c|ccc}
x & & -4 & \frac{-14}{6} \\
\hline & -2 / 3 \\
f^{\prime}(x) & & & \\
f^{\prime}(x) & +0 & 0 & 0+ \\
f^{\prime \prime}(x) & -0 & 0
\end{array} \\
& 0=6 x+14 \\
& \frac{-6 x}{-6}=\frac{14}{-6}
\end{aligned}
$$

Interval where $(-14$
decreasing and Concave up,,$-2 / 3)$

