Name \qquad Date \qquad Score \qquad

Find each limit. Show your work.

1. $6 \mathrm{x}+4$
2. $\quad-\infty \quad$ (Take a look at the graph on desmos -I included $\mathrm{pi} / 2$ in red to see where to examine) https://www.desmos.com/calculator/xbwog0ol51
3. $\lim _{x \rightarrow \infty} \frac{5 x^{3}+27}{20 x^{2}+10 x+9}$

$$
=\lim _{x \rightarrow \infty} \frac{x}{4}
$$

$=\infty$
4. $\frac{\sqrt{10}}{10}$
5. $\frac{-2}{x^{2}}$
6. $\lim _{x \rightarrow-\infty} \frac{1}{x^{2}}=0$
7. $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-2 x-3}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 3} \frac{(x-3)}{(x-3)(x+1)} \\
& =\frac{1}{4}
\end{aligned}
$$

8. $\lim _{x \rightarrow \infty} \frac{2 x^{2}+1}{(2-x)(2+x)}$

$$
=\lim _{x \rightarrow \infty} \frac{2 x^{2}+1}{4-x^{2}}
$$

$$
=-2
$$

9. 1 (take a look on desmos here to confirm: https://www.desmos.com/calculator/6dhzno9bra)

Note: Algebraically, you can first rewrite this in terms of sin and cos, then divide numerator and denominator by x. Then take the limit of numerator and denominator. Voila!
10. -219

Use the piecewise function to find the indicated limits or state that the limit does not exist.
9. $f(x)= \begin{cases}x^{2}+1 & \text { when } x<2 \\ 3 x+1 & \text { when } x \geq 2\end{cases}$
a. $\lim _{x \rightarrow 2^{-}} f(x)=5$
b. $\lim _{x \rightarrow 2^{+}} f(x)=7$
c. $\lim _{x \rightarrow 2} f(x)=$ Does not exist

Use the function $f(x)=|x-3|$ for questions 10-15.
10. Graph $f(x)$ in the space provided, then write $f(x)$ as a piecewise function.
$f(x)= \begin{cases}(x+4)^{2}, & x \leq-3 \\ -x, & -3<x<3 \\ -1, & x \geq 3\end{cases}$
11. $\lim _{x \rightarrow 3^{-}} f(x)=-3$

12. $\lim _{x \rightarrow 3^{+}} f(x)=-1$
13. $\lim _{x \rightarrow 3} f(x)=$ does not exist
14. $f(3)=-1$
15. Is $f(x)$ continuous at $x=3$? ___ Jostify your answer. $\xrightarrow{\lim _{x \rightarrow 3^{-}} f(x) \not \lim _{x \rightarrow 3^{+}} f(x) \notin f(3)}$

The limit at $\mathrm{x}=3$ is not equal to $\mathrm{f}(3)$.

Find each limit or function value.

16. $\lim _{x \rightarrow-1^{-}} f(x)=-3$
17. $\lim _{x \rightarrow-1^{+}} f(x)=3$
18. $\lim _{-} f(x)=5$
$x \rightarrow-4^{-}$
19. $\lim _{x \rightarrow-4^{+}} f(x)=-3$
20. $\lim _{x \rightarrow-4} f(x)=$ Does not exist
21. $f(-4)=\quad 1$
22. $\lim _{x \rightarrow 2^{-}} f(x)=5$
23. $\lim _{x \rightarrow 2^{+}} f(x)=5$

Identify any horizontal and/or vertical asymptotes. Show your work using proper notation to justify your answers.
24. $f(x)=\frac{4}{x^{2}-1}$

Horizontal Asymptote(s):
$\lim _{x \rightarrow \infty} \frac{4}{x^{2}-1}=0$
$\lim _{x \rightarrow-\infty} \frac{4}{x^{2}-1}=0$
One Horizontal Asymptote: $y=0$

Vertical Asymptote(s):
$x^{2}-1=0$
$x= \pm 1$
Two Vertical Asymptotes: $x=1$ and $x=-1$.

Identify all points of discontinuity and name the type of discontinuity.
25. $f(x)=\frac{x^{2}+x}{x}$

$$
f(x)=\frac{x(x+1)}{x}=(x+1) . \quad f(x) \text { is discontinuous at } x=0 . \text { Removable discontinuity } .
$$

26. $f(x)=\left\{\begin{array}{cc}\sin x & x<0 \\ 1-x & 0 \leq x \leq 1 \\ \ln x & x>1\end{array}\right.$
$\lim _{x \rightarrow 0^{-}} \sin x=0 \quad \lim _{x \rightarrow 0^{+}}(1-x)=1 \quad f(x)$ is discontinuous at $x=0$. Jump discontinuity.
$\lim _{x \rightarrow 1^{-}}(1-x)=0 \quad \lim _{x \rightarrow 1^{+}}(\ln x)=0 \quad f(x)$ is continuous at $x=1$.

Use the Intermediate Value Theorem to determine if the given function has a zero in the specified interval. Do not attempt to locate any zeros.
27. $f(x)=x^{2}+1 \quad$ on $[-2,4]$

Since f is a polynomial, it is continuous on $[-2,4]$. Because $f(-2)=5$ and $f(4)=17$ have the same sign, the Intermediate Value Theorem indicates that the function will not have a zero in the specified interval.

Solve.
28. The graph of $y=\frac{2 x^{2}+2 x+3}{4 x^{2}-4 x}$ has
(A) a horizontal asymptote at $y=1 / 2$, but no vertical asymptote.
(B) a horizontal asymptote at $\boldsymbol{y}=1 / 2$ and two vertical asymptotes, at $\boldsymbol{x}=0$ and $\boldsymbol{x}=1$.
(C) a horizontal asymptote at $x=2$, but no vertical asymptote.
(D) a horizontal asymptote at $y=1 / 2$ and two vertical asymptotes, at $x= \pm 1$.
29. Let $f(x)=\left\{\begin{array}{cc}\frac{x^{2}+x}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{array}\right.$

Which of the following statements are true?
I. $f(0)$ exists.
II. $\lim _{x \rightarrow 0} f(x)$ exists.
III. f is continuous at $x=0$.
(A) I only
(B) II only
(C) I and II
(D) I, II, III
30.

The figure above shows the graph of a function f with domain $-3<x \leq 3$. Which of the following statements are true?
I. $\lim _{x \rightarrow 1^{-}} f(x)$ exists.
II. $\lim _{x \rightarrow 1^{+}} f(x)$ exists.
III. $\lim _{x \rightarrow 1} f(x)$ exists.
(A) I only
(B) II only
(C) I and II
(D) I, II, III

More Continuity Problems

In Problems 1-2, determine whether the function f is continuous at the given values of c. Justify your answer.

1. $f(x)=\left\{\begin{array}{ccl}-2 x+1 & x<-1 & f(x) \text { is not continuous at } c=-1 \text { because } \\ 2 & x=-1 & \begin{array}{l}\lim f(x) \neq \lim f(x) . \text { They equal } 3 \text { and } 2 \text { respectively. } \\ 2 x+1\end{array} \\ -1<x<1 & f(x) \text { is continuous at } c=1 \text { because } \lim _{x \rightarrow-1^{+}} f(x)=f(1)=3 \\ x^{2}+2 & x \geq 1 & \end{array}\right.$ $c=-1, c=1$
2. $f(x)=\left\{\begin{array}{ccl}1 & x \leq-1 & f(x) \text { is continuous at } c=-1 \text { because } \underset{x \rightarrow-1}{\lim f(x)}=f(-1)=1 \\ -x & -1<x<0 \\ 1 & x=0 & f(x) \text { is not continuous at } c=0 \text { because } \lim _{x \rightarrow 0} f(x) \neq f(0) .\end{array}\right.$

They equal 0 and 1 respectively.
$f(x)$ is not continuous at $c=1$ because
$\lim f(x) \neq \lim f(x)$. They equal -1 and 1 , respectively.
$c=-1, c=0, c=1$
$x \rightarrow 1^{-} \quad x \rightarrow 1^{+}$
Solve.
3. For all but two choices of a, the function $y=\left\{\begin{array}{ll}x^{3} & \text { if } x \leq a \\ x^{2} & \text { if } x>a\end{array}\right.$ will be discontinuous at the point $x=a$. For what values of a will $f(x)$ be continuous at a ?

$$
\begin{aligned}
& a^{3}=a^{2} \\
& a^{3}-a^{2}=0 \\
& a^{2}(a-1)=0 \\
& a=0, a=1
\end{aligned}
$$

$\quad \begin{aligned} & \quad a=0, a=1 \\ & \text { 4. At what value or values of } x \text { is the function } y=\left\{\begin{array}{ccc}x+2 & \text { if } & x \leq-1 \\ x^{2} & \text { if } & -1<x<1 \\ 3-x & \text { if } & x \geq 1\end{array} \text { discontinuous? }\right.\end{aligned}$
Discontinuous at $x=1$.
5. Find the value of the constants, c, that make the function $y=\left\{\begin{array}{ll}c^{2}-x^{2} & \text { if } x<2 \\ 2(c-x) & \text { if } x \geq 2\end{array}\right.$ continuous

$$
\begin{array}{ll}
\text { on }(-\infty, \infty) . & c^{2}-2^{2}=2(c-2) \\
c^{2}-4=2 c-4 \\
c^{2}-2 c=0 \\
& c(c-2)=0 \\
& c=0, c=2
\end{array}
$$

