6.1: I can use similarity to determine sides and angle measures.

1. BUILDING How tall is the building?

6.2: I can prove triangles are similar using appropriate rules

Prove if the following pairs of triangles are similar, showing all work and stating all necessary rules

Mr Wilsain says that the given triangle is "Congruent by AAS, it has a vertical angle, an alternate angle and parallel markers which mean congruent".
Explain 2 things wrong with his answer and correct it.

1 : \qquad

2: \qquad

Correction: \qquad
$\triangle C D E \sim$ \qquad
6.3: I apply dilations and ratios on the coordinate plane

1. Dilate segment $A B$ by a scale factor of 2 from the origin. (Label it A'B'
2. What is one thing you notice about $A^{\prime} B^{\prime}$ compared to $A B$
\qquad
3. Dilate $A B$ by a scale factor of $1 / 3$ from point C (A"B")

Complete the sentence

"The 2nd dilation made the shape \qquad but it stayed \qquad to the original."
4. Line $A B$ has the equation $y=3 / 2 x+3$
a. Determine the equation of the line $A^{\prime} B^{\prime}$ if it is dilated from the origin at a scale factor of 2
$Y=$ \qquad
b. What part of the equation:

Changed: \qquad
Stayed the same (was preserved) \qquad

c. What would happen to the equation of the line if it were to be dilated from a point on the line (Such as point B)

Would the equation change? If so how? If not, why not?
(hint: what happens if you dilate point A by a SF of 2 from point B)
\qquad
\qquad
\qquad
\qquad

You will also need to divide a segment at a ratio: You did it yesterday and there is a video at mesamath.

