2.1 Rates of Change and the Derivative (\#6, 32, 51, 54)

6. derivative

32. Time Interval \mid Start $t_{0} \mid$ End $t|\quad \Delta t| \begin{aligned} & \Delta s \\ & \Delta t\end{aligned} \frac{f(t)-f\left(t_{0}\right)}{t-t_{0}}=\frac{\left(5-t^{2}\right)-4}{t-1}$

$[1,1.1]$	1	1.1	0.1	$\frac{\Delta s}{\Delta t}=\frac{f(1.1)-f(1)}{1.1-1}=\frac{\left(5-(1.1)^{2}\right)-4}{0.1}=-2.1$
$[1,1.01]$	1	1.01	0.01	$\frac{\Delta s}{\Delta t}=\frac{f(1.01)-f(1)}{1.01-1}=\frac{\left(5-(1.01)^{2}\right)-4}{0.01}=-2.01$
$[1,1.001]$	1	1.001	0.001	$\frac{\Delta s}{\Delta t}=\frac{f(1.001)-f(1)}{1.001-1}=\frac{\left(5-(1.001)^{2}\right)-4}{0.001}=-2.001$

The velocity appears to be approaching $-2 \mathrm{~cm} / \mathrm{s}$.
51. (a) The volume of the cube is given by $V=V(x)=x^{3}$. So the average rate of change of volume is $\frac{\Delta V}{\Delta x}=\frac{V(2.01)-V(2.00)}{2.01-2.00}=\frac{(2.01)^{3}-(2.00)^{3}}{0.01}=\frac{0.120601}{0.01}=12.060$ centimeters $^{3} /$ centimeter 2.
(b) $V^{\prime}(2)=\lim _{x \rightarrow 2} \frac{V(x)-V(2)}{x-2}=\lim _{x \rightarrow 2} \frac{x^{3}-2^{3}}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{x-2}=$ $\lim _{x \rightarrow 2}\left(x^{2}+2 x+4\right)=12$ centimeters ${ }^{3} /$ centimeter.
54. (a) The derivative, $d^{\prime}(c)$, represents the rate of change of demand per cost per gallon of olive oil.
(b) $d^{\prime}(30)$ is larger than $d^{\prime}(5)$. We see that the slope of the tangent line at $c=30$ is greater than the slope of the tangent line at $c=5$, and we estimate that $d^{\prime}(30)$ is
near zero, but $d^{\prime}(5)$ is significantly less than zero. $d^{\prime}(5)$ represents the rate of change of demand for olive oil (in gallons) per change in cost per gallon, in dollars, when the cost c is 5 dollars. Similarly, $d^{\prime}(30)$ represents the rate of change of demand for olive oil (in gallons) per change in cost per gallon, in dollars, when the cost c is 30 dollars.

2.2 The Derivative as a Function $(\# 46,49,58,62,65)$

46. (a) Yes. Since the derivative $f^{\prime}(x)$ equals the slope of a tangent line, horizontal tangent lines occur where the derivative equals 0 . Since $f^{\prime}(x)=0$ for $x=-4$ and $x=0$, the graph of f has two horizontal tangent lines, one at the point $(-4, f(-4))$ and the other at $(0, f(0))$.
(b) Yes. The graph of f has a vertical tangent line at $x=-2$ because both one-sided limits at $x=-2$ are infinite. Since one of the one sided limits equals $-\infty$ and the other equals ∞, f has a cusp at $(-2, f(-2))$.
(c) Yes. The graph of f has a corner at $x=2$ because the graph of f^{\prime} has unequal limits as x approaches 2 . So the graph of f has a corner at $(2, f(2))$.
47. (a) At $c=-2$ and $c=4, \lim _{x \rightarrow c} f(x)$ exists, but f is not continuous.
(b) At $c=0, c=2$, and $c=6, f$ is continuous, but f is not differentiable.
48. Let $f(x)=x^{3}$ and $c=2$. Then $f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}$.
49. Let $f(x)=\cos x$ and $c=\frac{\pi}{4}$. Then $f^{\prime}\left(\frac{\pi}{4}\right)=\lim _{x \rightarrow \frac{\pi}{4}} \frac{f(x)-f\left(\frac{\pi}{4}\right)}{x-\frac{\pi}{4}}=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x-\frac{\sqrt{2}}{2}}{x-\frac{\pi}{4}}$.
50. $V^{\prime}(t)=\lim _{h \rightarrow 0} \frac{V(t+h)-V(t)}{h}=\lim _{h \rightarrow 0} \frac{4(t+h)-4 t}{h}=\lim _{h \rightarrow 0} \frac{4 t+4 h-4 t}{h}=\lim _{h \rightarrow 0} \frac{4 h}{h}=\lim _{h \rightarrow 0} 4=4$.

The units of $V^{\prime}(t)$ are cubic feet per second.

