35. As x approaches 3, 1-x approaches -2 and $(3-x)^2$ approaches 0 from the right. Therefore, the ratio $\frac{1-x}{(3-x)^2}$ becomes unbounded in the negative direction, so

$$\lim_{x \to 3} \frac{1 - x}{(3 - x)^2} = \boxed{-\infty}.$$

The values in the table below support this conclusion.

x	2.9	2.99	2.999	$\rightarrow 3 \leftarrow$	3.001	3.01	3.1
$f(x) = \frac{1-x}{(3-x)^2}$	-190	-19900	-1999000	$f(x)$ approaches $-\infty$	-2001000	-20100	-210

36. As x approaches -1, x+2 approaches 1 and $(x+1)^2$ approaches 0 from the right. Therefore, the ratio $\frac{x+2}{(x+1)^2}$ becomes unbounded in the positive direction, so

$$\lim_{x \to -1} \frac{x+2}{(x+1)^2} = \boxed{\infty}$$

The values in the table below support this conclusion.

x	-1.1	-1.01	-1.001	$\rightarrow -1 \leftarrow$	-0.999	-0.99	-0.9
$f(x) = \frac{x+2}{(x+1)^2}$	90	9900	999000	$f(x)$ approaches ∞	1001000	10100	110

37. As x approaches π from the left, $\cos x$ approaches -1 and $\sin x$ approaches 0 from the right. Therefore, the ratio $\frac{\cos x}{\sin x} = \cot x$ becomes unbounded in the negative direction, so

$$\lim_{x \to \pi^-} \cot x = \boxed{-\infty}$$

The values in the table below, which have been rounded to two decimal places, support this conclusion.

x	$\pi - 0.1$	$\pi - 0.01$	$\pi - 0.001$	$\rightarrow \pi$
$f(x) = \cot x$	-9.97	-100.00	-1000.00	$f(x)$ approaches $-\infty$

38. As x approaches $-\pi/2$ from the left, sin x approaches -1 and cos x approaches 0 from the left. Therefore, the ratio $\frac{\sin x}{\cos x} = \tan x$ becomes unbounded in the positive direction, so

$$\lim_{x \to -\pi/2^{-}} \tan x = \boxed{\infty}$$

The values in the table below, which have been rounded to two decimal places, support this conclusion.

x	$-\frac{\pi}{2} - 0.1$	$-\frac{\pi}{2} - 0.01$	$-\frac{\pi}{2} - 0.001$	$\rightarrow -\pi/2$
$f(x) = \tan x$	9.97	100.00	1000.00	$f(x)$ approaches ∞

39. As x approaches $\pi/2$ from the right, 2x approaches π from the right, so $\sin(2x)$ approaches 0 from the left. Therefore, the ratio $\frac{1}{\sin(2x)} = \csc(2x)$ becomes unbounded in the negative direction, so

$$\lim_{x \to \pi/2^+} \csc(2x) = \boxed{-\infty}$$

The values in the table below, which have been rounded to two decimal places, support this conclusion.

x	$\frac{\pi}{2} \leftarrow$	$\frac{\pi}{2} + 0.001$	$\frac{\pi}{2} + 0.01$	$\frac{\pi}{2} + 0.1$
$f(x) = \csc(2x)$	$f(x)$ approaches $-\infty$	-500.00	-50.00	-5.03

40. As x approaches $-\pi/2$ from the left, $\cos x$ approaches 0 from the left. Therefore, the ratio $\frac{1}{\cos x} = \sec x$ becomes unbounded in the negative direction, so

$$\lim_{x \to -\pi/2^{-}} \sec x = \boxed{-\infty}.$$

The values in the table below, which have been rounded to two decimal places, support this conclusion.

x	$-\frac{\pi}{2} - 0.1$	$-\frac{\pi}{2} - 0.01$	$-\frac{\pi}{2} - 0.001$	$\rightarrow -\pi/2$
$f(x) = \sec x$	-10.02	-100.00	-1000.00	$f(x)$ approaches $-\infty$

41. As x approaches -1 from the right, x + 1 approaches 0 from the right. Therefore, $\ln(x+1)$ becomes unbounded in the negative direction, so

$$\lim_{x \to -1^+} \ln(x+1) = \boxed{-\infty}.$$

The values in the table below, which have been rounded to two decimal places, support this conclusion.

x	$-1 \leftarrow$	$-1 + 10^{-6}$	$-1 + 10^{-4}$	$-1+10^{-2}$
$f(x) = \ln(x+1)$	$f(x)$ approaches $-\infty$	-13.82	-9.21	-4.61

42. As x approaches 1 from the right, x - 1 approaches 0 from the right. Therefore, $\ln(x - 1)$ becomes unbounded in the negative direction, so

$$\lim_{x \to 1^+} \ln(x-1) = \boxed{-\infty}.$$

The values in the table below, which have been rounded to two decimal places, support this conclusion.

x	$1 \leftarrow$	$1 + 10^{-6}$	$1 + 10^{-4}$	$1 + 10^{-2}$
$f(x) = \ln(x - 1)$	$f(x)$ approaches $-\infty$	-13.82	-9.21	-4.61

43.
$$\lim_{x \to \infty} \frac{5}{x^2 + 4} = \lim_{x \to \infty} \frac{\frac{5}{x^2}}{\frac{x^2 + 4}{x^2}} = \lim_{x \to \infty} \frac{\frac{5}{x^2}}{1 + \frac{4}{x^2}} = \frac{0}{1 + 0} = \boxed{0}$$

44.
$$\lim_{x \to -\infty} \frac{1}{x^2 - 9} = \lim_{x \to -\infty} \frac{\frac{1}{x^2}}{\frac{x^2 - 9}{x^2}} = \lim_{x \to -\infty} \frac{\frac{1}{x^2}}{1 - \frac{9}{x^2}} = \frac{0}{1 - 0} = \boxed{0}$$

45.
$$\lim_{x \to \infty} \frac{2x+4}{5x} = \lim_{x \to \infty} \frac{\frac{2x+4}{5x}}{\frac{5x}{5x}} = \lim_{x \to \infty} \frac{\frac{2}{5} + \frac{4}{5x}}{\frac{1}{5}} = \frac{\frac{2}{5} + 0}{\frac{1}{5}} = \frac{\frac{2}{5}}{\frac{1}{5}}.$$

$$46. \lim_{x \to \infty} \frac{x+1}{x} = \lim_{x \to \infty} \frac{\frac{x+1}{x}}{\frac{x}{x}} = \lim_{x \to \infty} \frac{1+\frac{1}{x}}{1} = \frac{1+0}{1} = \boxed{1},$$

$$47. \lim_{x \to \infty} \frac{x^3 + x^2 + 2x - 1}{x^3 + x + 1} = \lim_{x \to \infty} \frac{\frac{x^3 + x^2 + 2x - 1}{\frac{x^3 + x + 1}{x^3}}}{\frac{x^3 + x + 1}{x^3}} = \lim_{x \to \infty} \frac{1+\frac{1}{x} + \frac{2}{x^2} - \frac{1}{x^3}}{1 + \frac{1}{x^2} + \frac{1}{x^3}} = \frac{1+0+0-0}{1+0+0} = \boxed{1}.$$

$$48. \lim_{x \to \infty} \frac{2x^2 - 5x + 2}{5x^2 + 7x - 1} = \lim_{x \to \infty} \frac{\frac{2x^2 - 5x + 2}{5x^2}}{\frac{5x^2 + 7x - 1}{5x^2}} = \lim_{x \to \infty} \frac{\frac{2}{5} - \frac{1}{x} + \frac{2}{5x^2}}{1 + \frac{7}{5x} - \frac{1}{5x^2}} = \frac{\frac{2}{5} - 0 + 0}{1 + 0 - 0} = \boxed{\frac{2}{5}}$$

49.
$$\lim_{x \to -\infty} \frac{x^2 + 1}{x^3 - 1} = \lim_{x \to -\infty} \frac{\frac{x^2 + 1}{x^3}}{\frac{x^3 - 1}{x^3}} = \lim_{x \to -\infty} \frac{\frac{1}{x} + \frac{1}{x^3}}{1 - \frac{1}{x^3}} = \frac{0 + 0}{1 - 0} = \boxed{0}.$$

50.
$$\lim_{x \to \infty} \frac{x^2 - 2x + 1}{x^3 + 5x + 4} = \lim_{x \to \infty} \frac{\frac{x^2 - 2x + 1}{x^3}}{\frac{x^3 + 5x + 4}{x^3}} = \lim_{x \to \infty} \frac{\frac{1}{x} - \frac{2}{x^2} + \frac{1}{x^3}}{1 + \frac{5}{x^2} + \frac{4}{x^3}} = \frac{0 - 0 + 0}{1 + 0 + 0} = \boxed{0}$$

51.

$$\lim_{x \to \infty} \left[\frac{3x}{2x+5} - \frac{x^2+1}{4x^2+8} \right] = \lim_{x \to \infty} \frac{3x}{2x+5} - \lim_{x \to \infty} \frac{x^2+1}{4x^2+8} = \lim_{x \to \infty} \frac{\frac{3x}{2x}}{\frac{2x+5}{2x}} - \lim_{x \to \infty} \frac{\frac{x^2+1}{4x^2}}{\frac{4x^2+8}{4x^2}} = \lim_{x \to \infty} \frac{\frac{3}{2}}{\frac{1}{1+0}} - \frac{\frac{1}{4}+0}{\frac{1}{1+0}} = \frac{3}{2} - \frac{1}{4} = \left[\frac{5}{4} \right].$$

52.

$$\lim_{x \to \infty} \left[\frac{1}{x^2 + x + 4} - \frac{x + 1}{3x - 1} \right] = \lim_{x \to \infty} \frac{1}{x^2 + x + 4} - \lim_{x \to \infty} \frac{x + 1}{3x - 1} = \lim_{x \to \infty} \frac{\frac{1}{x^2}}{\frac{x^2 + x + 4}{x^2}} - \lim_{x \to \infty} \frac{\frac{x + 1}{3x}}{\frac{3x - 1}{3x}}$$
$$= \lim_{x \to \infty} \frac{\frac{1}{x^2}}{1 + \frac{1}{x} + \frac{4}{x^2}} - \lim_{x \to \infty} \frac{\frac{1}{3} + \frac{1}{3x}}{1 - \frac{1}{3x}}$$
$$= \frac{0}{1 + 0 + 0} - \frac{\frac{1}{3} + 0}{1 - 0} = 0 - \frac{1}{3} = \left[-\frac{1}{3} \right].$$